期刊文献+

南京8个湖泊超微真核浮游生物遗传多样性的研究 被引量:6

Genetic Diversity of Eukaryotic Picoplankton of Eight Lakes in Nanjing
原文传递
导出
摘要 用末端限制性片段长度多态性(terminal restriction fragment length poly morphism,T-RFLP)方法对南京市区8个不同营养水平湖泊的沿岸带和敞水带超微真核浮游生物(0.2~5.0μm)遗传多样性进行了研究,目的是了解不同营养水平湖泊超微真核浮游生物遗传多样性的差异以及影响这种差异的主要因子.T-RFLP结果表明,不同湖泊超微真核浮游生物的T-RFLP指纹图谱存在明显差异,沿岸带和敞水带末端限制性片段T-RFs平均值分别为16.4和15.9,其中营养水平中等的南湖沿岸带T-RFs最多(30个),营养水平较低的百家湖敞水带T-RFs最少(10个),除琵琶湖和莫愁湖外,沿岸带的超微真核浮游生物遗传多样性均比敞水带高.聚类分析表明,除百家湖、前湖、南湖外,其他湖泊沿岸带和敞水带的相似度都比较高.超微真核浮游生物遗传多样性与环境因子的典型对应分析(canonical correspondence analysis,CCA)表明,叶绿素a浓度与超微真核浮游生物群落结构和多样性显著相关(p=0.004).本研究表明,超微真核浮游生物遗传多样性受湖泊营养水平的影响,而且在敞水带和沿岸带存在差异. The method of terminal restriction fragment length polymorphism ( T-RFLP) was used to study the genetic diversity of eukaryotic picoplankton (0. 2-5. 0 μm) in the pelagic and littoral zones in 8 lakes with different trophic status in Nanjing. The objectives of this study were to confirm the difference of the genetic diversity of eukaryotic picoplankton among lakes and the main factors affecting this difference. T-RFLP indicated that there were various fingerprints among lakes and zones. The average terminal restriction fragments (T-RFs) in the littoral and pelagic zones were 16. 4 and 15. 9,respectively. The littoral zone in Lake Nan and the pelagic zone in Lake Mochou had 30 T-RFs and 27 T-RFs,respectively. The T-RFs were the least abundant (10) in the pelagic zone in Lake Baijia with relatively low trophic status. The genetic diversity of eukaryotic picoplankton was higher in the littoral zone than that in the pelagic zone except Lake Pipa and Mochou. The cluster analysis indicated that the similarities of the littoral zones and the pelagic zones were very high except Lake Baijia,Qian and Nan. The canonical correspondence analysis between the genetic diversity of eukaryotic picoplankton and environmental factors revealed the concentration of chlorophyll a had the most important impact on the eukaryotic picoplankton communities (p = 0. 004). The results indicated that the genetic diversity of eukaryotic picoplankton is affected by the trophic status and has the difference in the pelagic and littoral zones.
出处 《环境科学》 EI CAS CSCD 北大核心 2010年第5期1293-1298,共6页 Environmental Science
基金 国家重点基础研究发展计划(973)项目(2008CB418104)
关键词 超微真核浮游生物 南京 湖泊 T-RFLP 遗传多样性 营养水平 eukaryotic picoplankton Nanjing lakes terminal restriction fragment length polymorphism (T-RFLP) genetic diversity trophic status
  • 相关文献

参考文献29

  • 1Azam F, Fenchel T, Field J G, et al. The ecological role of water-column microbes in the sea [ J]. Mar Ecol Progr, 1983, 10 : 257-263.
  • 2Caron D A, Peele E R, Lim E L, et al. Picoplankton and nanoplankton and their trophic coupling in the surface waters of the Sargasso Sea south of Bermuda [ J ]. Limnol Oceanogr, 1999, 44: 259-272.
  • 3Stockner J G, Antia N J. Algal picoplankton from marine and freshwater ecosystems: a muhidiseiplinary perspective [ J]. Can J Fish Aq Sei, 1986, 43: 2472-2503.
  • 4Diez B, Pedros-Alio C, Massana R. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small- subunit rRNA gene cloning and sequencing [ J]. Appl Environ Microbiol, 2001, 67: 2932-2941.
  • 5Savin M C, Martin J L, LeGresley M, et al. Plankton diversity in the Bay of Fundy as measured by morphological and molecular methods [ J]. Microbiol Ecol, 2004, 48 : 51-65.
  • 6Ansotegui A, Sarobe A, Trigueros J M, et al. Size distribution of algal pigments and phytoplankton assemblages in a coastal- estuarine environment: contribution of small eukaryotic algae [ J]. J Plankton Res, 2003, 25: 341-355.
  • 7Reuss N, Poulsen L K. Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom period off West Greenland [J]. Mar Biol, 2002, 141 : 423-434.
  • 8Lepere C, Boueher D, Jardillier L, et al. Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem ( Lake Pavin ) [ J ]. Appl Environ Microbiol, 2006, 72: 2971-2981.
  • 9Liu W T, Marsh T L, Cheng H. Characterization of microbiolial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA [ J]. Appl Environ Microbiol, 1997, 63: 4516-4522.
  • 10Garstecki T, Verhoeven R, Wickham S A, et al. Benthic-pelagic coupling: a comparison of the community structure of benthic and planktonic heterotrophic protists in shallow inlets of the southern Baltic [ J ]. Freshwater Biol, 2000, 45 : 147-167.

二级参考文献22

  • 1MUYZER G,DE WAAL EC,UITTERLINDEN AG.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J].Appl Environ Microbiol,1993,59(3):695 -700.
  • 2LEE D-H,ZO Y G,KIM S J.Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand conformation polymorphism[J].Appl Environ Microbiol,1996,62(9):3112 -3120.
  • 3LIU W T,MARSH T L,CHENG H,et al.Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA[J].Appl Environ Microbiol,1997,63 (11):4516-4522.
  • 4KENT A D,SMITH D J,BENSON B J,et al.Web -based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities[J].Appl Environ Microbiol,2003,69(11):6768 -6776.
  • 5MARSH T L.Terminal Restriction Fragment Length Polymorphism (TRFLP):an emerging method for characterizing diversity among homologous populations of amplicons[J].Curr Opin Microbiol,1999,2 (3):323-327.
  • 6MARSH T L,SAXMAN P,COLE J,et al.Terminal restriction fragment length polymorphism analysis program,a web-based research tool for microbial community analysis[J].Appl Environ Microbiol,2000,66(8):3616 -3620.
  • 7SAKAIA M,MATSUKAB A,KOMURAB T,et al.Application of a new PCR primer for terminal restriction fragment length polymorphism analysis of the bacterial communities in plant roots[J].J Microbiol Methods,2004,59(1):81 -89.
  • 8LAMONTAGNE M G,MICHEL FC JR,HOLDEN P A,et al.Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis[J].J Microbiol Methods,2002,49(3):255 -264.
  • 9COLE J R,CHAI B,MARSH T L,et al.The Ribosomal Database Project (RDP-Ⅱ):previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy[J].Nucleic Acids Res,2003,31 (1):442 -443.
  • 10KITTS C L.Terminal Restriction Fragment Patterns:A tool for comparing microbial communities and assessing community dynamics[J].Curr Issues Intest Microbiol,2001,2(1):17 -25.

共引文献22

同被引文献139

引证文献6

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部