期刊文献+

基于分维搜索和环状描述符的SIFT改进算法 被引量:1

Improved SIFT based on Separated Dimension Searching and Cricoid Feature Descriptor
下载PDF
导出
摘要 针对SIFT算法在极值点搜索和特征计算方面的低效,提出一种基于分维搜索和环状描述符的SIFT匹配算法(SC-SIFT)。该算法将SIFT算法中的三维极值点搜索策略分解(separate)为两个维度上的逐维搜索,同时引入了一种新的环状(cricoid)特征描述算子来代替原来高维低效的特征。实验证明,该方法不仅能够提高SIFT算法的执行效率,而且提高匹配正确率,实现了对SIFT算法的优化。 A improved SIFT(SC-SIFT),based on separated dimension searching and cricoid feature descriptor,was proposed to deal with the poor efficiency in the Maxima and minima point searching and feature compute.The searching method in new algorithm works in two dimension first,and then in the third dimension,which in the original algorithm is working in three dimension once.A new cricoid feature descriptor used in the new algorithm instead of the original descriptor which is high dimension but low efficency.Experimental results show that:the new algorithm can not only improve the execution efficiency of SIFT,but also raised the matching accuracy,optimize the SIFT algorithm.
作者 段富 张耀宗
出处 《电脑开发与应用》 2010年第5期1-4,共4页 Computer Development & Applications
基金 山西省科技攻关基金资助项目(20080322008)
关键词 SIFT 分维搜索 环状特征描述符 匹配正确率 SIFT method search of separate dimension cricoid feature descriptor matching accuracy
  • 相关文献

参考文献4

二级参考文献17

  • 1王敬东,徐亦斌,沈春林.一种新的任意角度旋转的景象匹配方法[J].南京航空航天大学学报,2005,37(1):6-10. 被引量:14
  • 2孙坚伟,王汝笠.改进的MOPs图像匹配算法[J].科学技术与工程,2006,6(21):3439-3441. 被引量:4
  • 3Harris C.Stephens M.A combined corner and edge detector[A].Proc.of The Fourth Alvey Vision Conference[C],Manchestsr,UK,1988:147-151
  • 4Tomasi C,Kanade T.Detection and Tracking of Point Features[R].Carnegie Mellon University Technical Report CMU-CS-91-132,Pittsburgh,USA,Apr 1991
  • 5Lowe D G.Object recognition from local scale-invariant features[A].International Conference on Computer Vision[C],Corfu,Greece,Sep 1999:1150-1157
  • 6Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110
  • 7Mikolajczyk K,Schmid C.Scale & affine invariant interest point detectors[J].International Journal of Computer Vision,2004,60(1):63-86
  • 8Mikolajczyk K,et al.Local features for object class recognition[A].Proc.ICCV'05[C],Beijing,China,2005,Volume 2:1792-1799
  • 9Ke Y,Sukthankar R.PCA-SIFT:a more distinctive representation for local image descriptors[A].Proc.Conf.Computer Vision and Pattern Recognition[C],2004:511-517
  • 10Ledwich L,Williams S.Reduced SIFT features for image retrieval and indoor localisation[A].Australasian Conference on Robotics and Automation[C],Canberra,Australasian,2004

共引文献91

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部