期刊文献+

用部分变量控制和同步一个超混沌系统 被引量:2

Control and synchronization for a hyper chaotic system using partial variables
原文传递
导出
摘要 根据一个超混沌系统的具体结构和微分方程稳定性理论,利用它的第三个状态变量设计了一个线性反馈控制器,实现了该混沌系统的渐近稳定,以驱动系统的第一个和第三个状态变量作为驱动变量,设计了适当的控制器,实现了两个相同的超混沌系统的同步,数值仿真结果表明这些同步方法是有效的和可行的. According to the structure of a hyper chaotic system and differential equation stability theory,a linear feedback controller,which makes the hyper chaotic system asymptotically stable,is designed by using the third state variable of the chaotic system.Some appropriate controllers are applied to synchronize two identical hyper chaotic systems by taking the first and the third states variable of the master system as driving variable.Numerical simulations are presented to show the effectiveness and feasibility of these synchronization methods.
作者 王安福
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2010年第2期249-252,共4页 Engineering Journal of Wuhan University
基金 国家自然科学基金项目(编号:60474011) 湖北省教育厅科学技术研究重点项目(编号:D20096003)
关键词 超混沌系统 控制 同步 状态变量 hyper chaotic system control synchronization state variable
  • 相关文献

参考文献9

  • 1Itoh M, Chua L O. Reconstruction and synchronization of hyperchaotic circuits via one state variable[J]. Int. J. Bifur. Chaos, 2002,10:2069-2085.
  • 2Hegazi A S, Agiza H N, El Dessoky M M. Adaptive synchronization for Rossler and Chua's circuit system [J]. Int. J. Bifur. Chaos, 2002,7..1579-1597.
  • 3Wang Y W, Guan Z H, Wang H O. Feedback and adaptive control for the synchronization of Chen system via a single variable[J]. Phys. Lett. A, 2003, 312:34-40.
  • 4Yassen M T. Adaptive control and synchronization of a modified Chua's circuit system [J].Applied Mathematics and Computation, 2003,135 : 113-128.
  • 5Lu J A, Wu X Q, Han X P, et al. Adaptive feedback synchronization of a unified chaotic system[J].Phys. Lett. A,2004,329:327-333.
  • 6Han X P, Lu J A, Wu X Q. Adaptive feedback synchronization of Iu system [J].Chaos, Solitons and Fractals, 2004,22:221-227.
  • 7Wang YW, WenCY, SohYC. etal. Adaptive con- trol and synchronization for a class of nonlinear chaotic systems using partial system states[J]. Phys. Lett. A, 2006,351:79-84.
  • 8王绍明,王安福.Liu混沌系统的单状态变量控制与同步[J].江西师范大学学报(自然科学版),2007,31(3):285-288. 被引量:5
  • 9王绍明,王安福.利用单个状态变量同步广义Lorenz系统[J].武汉理工大学学报,2007,29(5):120-124. 被引量:3

二级参考文献18

  • 1Pecora L M,Carrol T L.Synchronization in Chaotic System[J].Phys Rev Lett,1990,64:821-824.
  • 2Chen G,Dong X.From Chaos to Order:Methodologies,Perspectives and Applications[M].Singapore:World Scientific,1998.
  • 3Itoh M,Chua L O.Reconstruction and Synchronization of Hyperchaotic Circuits via one State Variable[J].Int J Bifur Chaos,2002,10:2069-2085.
  • 4Hegazi A S,Agiza H N,El-dessoky M M.Adaptive Synchronization for Rossler and Chua's Circuit System[J].Int J Bifur Chaos,2002,7:1579-1597.
  • 5Wang Y W,Guan Z H,Wang H O.Feedback and Adaptive Control for the Synchronization of Chen System via a Single Variable[J].Phys Lett A,2003,312:34-40.
  • 6Yassen M T.Adaptive Control and Synchronization of a Modified Chua's Circuit System[J].Applied Mathematics and Computation,2003,135:113-128.
  • 7Lu J A,Wu X Q,Han X P,et al.Adaptive Feedback Synchronization of a Unified Chaotic System[J].Phys Lett A,2004,329:327-333.
  • 8Ho M C,Hung Y C,Liu Z Y,et al.Reduced-order Synchronization of Chaotic Systems with Parameters Unknown[J].Phys Lett A,2006,348:251-259.
  • 9Boccaletti S,Grebogi C,Lai Y C,et al.The control of chaos:theory and applications[J].Phys Rep,2000,329:103-197.
  • 10Boccaletti S,Kurths J,Osipov G,et al.The synchronization of chaotic systems[J].Phys Rep,2002,336:1-101.

共引文献4

同被引文献20

  • 1Lorenz E N. Deterministic nonpefiodic flow[J]. Jourrzal of Atmos Sci,1963,20(2) :130 -141.
  • 2Chen G, Ueta T. Yet another chaotic attractor [J].International Journal of Bifurcation and Chaos, 1999,9 (7) :1465-1466.
  • 3Lu J H ,Chen G. A new chaotic attractor cioned[J]. International Journal of Bifurcation and Chaos, 2002, 12(3) :659-661.
  • 4Gao T, Chen Z, Yuan Z, etal. A hyperchaos generated fromChen'ssystem[J]. IntJModPhysC,2006, 17(4) :471-478.
  • 5Li Y, Tang W K S, Chen G. Hyperchaos evolved from the generalized Lorenz equation[J]. Int J Circ Theory App1,2005,33(4) :235-251.
  • 6Chen A,Lu J,IAi J,et al. Generating hyperchaotic Lu attractor via state feedback control [J]. Physica A, 2006,364:103- 110.
  • 7Wang G, Zhang X, Zhen Y, et al. A new modified hyperchaotic Lu system[J].Physica A, 2006,371 ( 2 ) : 260-272.
  • 8Rossler O E. An equation for hyperchaos[J]. Physics Letters A, 1979,71 (2-3) : 155-157.
  • 9王兴元,王明军.超混沌Lorenz系统[J].物理学报,2007,56(9):5136-5141. 被引量:87
  • 10孟娟,王兴元.基于非线性观测器的一类混沌系统的相同步[J].物理学报,2007,56(9):5142-5148. 被引量:7

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部