期刊文献+

Banach空间中向量均衡问题的近似解的最优性条件 被引量:4

Optimality Conditions of Approximate Solutions for Vector Equilibrium Problems in Banach Spaces
下载PDF
导出
摘要 在Banach空间中引进了向量均衡问题的ε-有效解,ε-Henig有效解,ε-全局有效解的概念,同时给出了向量均衡问题的ε-有效解,ε-弱有效解,ε-Henig有效解与ε-全局有效解的最优性条件。 It introduces the concepts of ε-efficient solution,ε-Henig efficient solution,ε-globally efficient solution of vetor equilibrium problems in Banach spaces.Meanwhile,it provides optimality conditions for ε-efficient solution,ε-weakly efficient solution,ε-Henig efficient solution,ε-globally efficient solution of vetor equilibrium problems.
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2010年第2期103-107,共5页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(10561007) 江西自然科学基金资助项目(2008GZS0072)
关键词 向量均衡问题 近似解 最优性条件 vetor equilibrium problems approximate solutions optimality conditions
  • 相关文献

参考文献12

  • 1Loridan P. δ - Solutions in Vector Minimization Problems [ J ]. Journal of Optimization Theory and Applications, 1984,43 (2) :265 -276.
  • 2Valyi I. Approximate Saddle - Point Theorems in Vector Optimization[ J]. Journal of Optimization Theory and Applications, 1987,55:435 - 448.
  • 3戎卫东,贾毅竹,杜志军.向量平衡问题ε-解集的拓扑性质(英文)[J].运筹学学报,2001,5(2):1-11. 被引量:4
  • 4Yang X Q, Zheng X Y. Approximate Solutions and Optimality Conditions of Vector Variational Inequalities in Banach Spaces [ J ]. Journal of Global Optimization, 2008, 40:455 - 462.
  • 5龚循华,熊淑群.类凸向量均衡问题解的最优性条件[J].南昌大学学报(理科版),2009,33(5):409-414. 被引量:7
  • 6Gutirrez C, Jimnez B, Novo V. Optimality Conditions via Scalarization for a New δ - Efficiency Concept in Vector Optimization Problems [ J ]. European Journal of Operational Research,2010,201 (1) :11 -22.
  • 7Gong X H. Efficiency and Henig Efficiency for Vector Equilibrium Problems [ J ]. Journal of Optimization Theory and Applications ,2001,108 ( 1 ) : 139 - 154.
  • 8Gong X H. Connectedness of the Solution Sets and Scalarization for Vector Equilibrium Problems [ J ]. Journal of Optimization Theory and Applications, 2007,133 : 151 - 161.
  • 9Gong X H, Dong H B, Wang S Y. Optimality Condition for Proper Effcient Solutions of Vector Set - vauled Optimization[ J ]. Journal of Mathematical Analysis and Applications,2003,284:332 - 350.
  • 10Jahn J. Mathematical Vector Optimization in Partially Ordered Linear Spaces [ M]. Germany: Peter L, 1986.

二级参考文献16

  • 1Giannessi F, Mastroeni G, Pellegrini L. On The Theory of Vector Optimization and Variational Inequalities [ A ]. In : Giannessi F (Ed.). Vector Variational Inequalities and Vector Equilibria [ C ]. Netherlands: Kluwer Academic Publishers ,2000 : 153 - 215.
  • 2Morgan J, Romaniello M. Scalarization and Kuhn - Tucker - like Conditions for Weak Vector Generalized Quasivariational Inequalities [ J ]. Journal of Optimization Theory and Applications ,2006,130:309 - 316.
  • 3Yang X Q, Zheng X Y. Approximate Solutions and Optimality Conditions of Vector Variational Inequalities in Banach Spaces [ J ]. Journal of Global Optimization, 2008, 40:455 - 462.
  • 4Gong X H. Optimality Conditions for Vector Equilibrium Problems[ J]. Journal of Mathematical Analysis and Applications ,2008,342 : 1 455 - 1 466.
  • 5Gong X H, Fu W T, Liu W. Super Efficiency for a Vector Equilibrium in Locally Convex Topological Vector Spaces [ A]. In: Giannessi F ( Ed. ). Vector Variational Inequalities and Vector Equilibria[C]. Netherlands: Kluwer Academic Publishers ,2000:233 - 252.
  • 6Gong X H. Connectedness of the Solution Sets and Scalarization for Vector Equilibrium Problems [ J ]. Journal of Optimization Theory and Applications, 2007,133 : 151 - 161.
  • 7Gong X H. Optimality Conditions for Henig and Globally Proper Efficient Solutions with Ordering Cone has Empty Interior[ J]. Journal of Mathematical Analysis and Applications ,2005,307 : 12 - 31.
  • 8Jahn J. Mathematical Vector Optimization in Partially Ordered Linear Spaces[ M]. Germany:Peter L, 1986.
  • 9Chen G Y,Zeitschrife Für Operations Research,1990年,34卷,1页
  • 10Fan K,Math Ann,1961年,142卷,305页

共引文献8

同被引文献26

  • 1刘涛.集值向量优化问题ε-超有效解集的连通性[J].四川师范大学学报(自然科学版),2006,29(3):297-299. 被引量:3
  • 2Qiu-sheng Qiu.Henig Efficiency in Vector Optimization with Nearly Cone-subconvexlike Set-valued Functions[J].Acta Mathematicae Applicatae Sinica,2007,23(2):319-328. 被引量:8
  • 3Ansari Q H, Oettli W, Schlager D. A generalization of vectorial equilibria [ J ]. Mathematical Methods of Operation Research, 1997,46 (2) :147- 152.
  • 4Bianchi M, Hadjisavvas N, Schaible S. Vector equilibrium problems with generalized monotone bifunctionsl J ]. J Optim Theory Appl, 1997,92 (3) :527-542.
  • 5Giannessi F, Mastroeni G, Pellegrini L. On the theory of vector optimization and variational inequalities. Image space analysis and separation [ C ]//Giannessi F. Vector variational inequalities and vector equilibria : mathematical theories. Dordrecht : Kluwer Academic Publishers,2000 : 153-215.
  • 6Ansari Q H, Konnov I V, Yao J C. Characterlzations of solutions for vector equilibrium problems [ J ]. J Optim Theory Appl,2002,113 ( 3 ) :435- 477.
  • 7Fu J. Simultaneous vector variational inequalities and vector implicit complementarity problems [ J ]. J Optim Theory Appl, 1997,93 (1) :141- 151.
  • 8Gong X H. Connectedness of the solution sets and scalarization for vector equilibrium problems [ J ]. J Optim Theory App1,2007,133 (2) :151- 161.
  • 9Gong X H. Efficiency and henig efficiency for vector equilibrium problems [ J ]. J Optim Theory Appl,2001,108 (1) :139-154.
  • 10Hadjisavvas N, Schaible S. From scalar to vector equilibrium problems in the quasimonotone case[ J ]. J Optim Theory Appl, 1998,96 (2) :297- 309.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部