期刊文献+

基于ANSYS的大型复合材料风力机叶片结构分析 被引量:19

Structural Analysis of Large-scale Composite Wind Turbine Blade Based on ANSYS
下载PDF
导出
摘要 基于ANSYS软件,对某款应用于GL3A风场的1500kW大型复合材料风力机叶片进行了结构分析。分析结果表明:该叶片的振型以一阶挥舞和一阶摆振为主,其频率分别为0.86Hz和1.59Hz;在极限挥舞载荷作用下,该叶片有限元模型计算得到的叶尖挠度为8.445m,而该叶片全尺寸静力试验得到的极限挥舞载荷作用下的叶尖挠度为8.12m,计算值与试验值的误差只有3.8%;另外,该叶片的最大计算拉应力和压应力分别为228MPa和201MPa,而该叶片玻纤/环氧复合材料实测拉伸强度和实测压缩失稳强度分别为720MPa和380MPa,其计算最大应力只有对应实测极限强度的31.7%和52.9%。 Based on the ANSYS software, the structttral analysis of a kind of 1500kW large-scale composite wind turbine blade which applied in GL3A wind farm was carried out. The analysis restdts show that the vibration modes of this blade are mainly presented as first tlapwise mode and first edgewise mode, the frequencies of the vibration are respectively 0.86Hz and 1.59Hz. At the action of ultimate flapwise loads, the FEM analysis results show that the blade tip deformation is 8.445m, while the blade tip defomaation of the full scale blade under static test is 8.12m, so the deviation between the calculated and tested value of the blade tip deformation is only 3.8%. Moreover, the calculated maximum tensile stress and the compressive stress are 228MPa and 201MPa, while the teated tensile strength and compressive buckling strength of the glass-fiber/epoxy composite are 720MPa and 380MPa, respectively. Consequently, the percentages of the calculated maximum stress and the tested ultimate strength are respectively 31.7% and 52.9%.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2010年第2期46-50,共5页 Journal of National University of Defense Technology
基金 国家863计划资助项目(2007AA03Z563) 中国博士后科学基金资助项目(20070420832) 湖南省科技资助项目(2008RS4033)
关键词 复合材料 风力机叶片 结构分析 极限挥舞载荷 composite wind turbine blade structural analysis ultimate flapwise load
  • 相关文献

参考文献10

  • 1Herbert G M J,Iniyan S,Sreevalsan E,et al.A Review of wind Energy Technologies[J].Renewable and Sustainable Energy Reviews,2007(11):1117-1145.
  • 2Paul S V,Thomas D A,Herbert J S,et al.Trends in the Design,Manufacture and Evaluation of Wind Turbine Blades[J].Wind Energy,2003,6(3):245-259.
  • 3George M.Composites Help Improve wind Turbine Breed[J].Reinforced Plastics,2005,49(4):18-22.
  • 4肖加余,曾竟成,江大志.航天主结构复合材料及其软模辅助RTM成型工艺[J].航天返回与遥感,2007,28(2):49-52. 被引量:6
  • 5彭超义,曾竟成,肖加余,杜刚.铺层方式对碳/环氧管层间剪应力影响的有限元分析[J].国防科技大学学报,2005,27(1):12-15. 被引量:3
  • 6Gunjit S B.Computerized Method for Preliminary Structural Design of Composite Wind Turbine Blades[J].Journal of Solar Energy Engineering,2001,123(4):372-382.
  • 7Us S,Tolun S.Structural Design and Analysis of Wind Turbine Rotor Blades Using Laminated Sandwich Composites[C]//Engineering,Construction,and Operations in Challenging Environments:Earth & Space,2004:492-298.
  • 8Kong C,Banga J,Sugiyama Y.Structural Investigation of Composite wind Turbine Blade Considering Various Load Cases and Fatigue Life[J].Energy,2005,30:2101-2114.
  • 9Jureczko M,Pawlak M,Mezyk A.Optimisation of wind Turbine Blades[J].Journal of Materials Processing Technology,2005,167(2-3):463-471.
  • 10王勖成.有限单元法[M].北京:清华大学出版社,2005.

二级参考文献28

  • 1陈汝训.复合材料壳体的轴压稳定性[J].固体火箭技术,2001,24(1):13-15. 被引量:14
  • 2卢嘉德.固体火箭发动机复合材料技术的进展及其应用前景[J].固体火箭技术,2001,24(1):46-52. 被引量:52
  • 3肖少伯.复合材料成型新工艺──热胀成型法[J].宇航材料工艺,1996,26(6):10-13. 被引量:26
  • 4Spannoli A, Elghazouli A Y, Chryssanthopoulos M K. Numerical Simulation of Glass-reinforced Plastic Cylinders under Axial Compression[J]. Marine Structures,2001,(14):353-374.
  • 5Meyer-Piening H-R, Farshad M, Geier B, et al. Buckling Loads of CFRP Composite Cylinders under Combined Axial and Torsion Loading-experiments and Computations[J]. Composite Structures,2001,53:427-435.
  • 6Agrawal A, Jar P-Y B. Analysis of Specimen Thickness Effect on Interlaminar Fracture Toughness of Fibre Composites Using Finite Element Models[J]. Composites Science and Technology,2003,6:1393-1402.
  • 7Hou A,Kurt G.Experimental Study on Compressive Strength of CFRP Inter-stage Attach Fitting[R].AIAA-98-1878,1998.
  • 8Bansemir H,Haider O.Fibre Composite Structures for Space Applications-recent and Future Developments[J].Cryogenics,1998,38(1):51-59.
  • 9Lawrence A G.Resin Transfer Molding for Affordable Primary Structure[A].AIAA-95-3889,1995.
  • 10Daniel E S,Vincent A B,Donald J P,et al.Critical Technologies in Composite Wing and Intertank Primary Structures Supports RLV Success[R].AIAA-96-1425-CP,1996.

共引文献24

同被引文献186

引证文献19

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部