期刊文献+

基于广义Gibbs先验的优质PET成像 被引量:1

Generalized Gibbs Priors in Positron Emission Tomography
下载PDF
导出
摘要 最大后验方法(Maximum A Posteriori,MAP)已经广泛应用于解决图像重建中的病态问题,正电子发射成像(Positron Emission Tomography,PET)便是其中之一.本文基于MAP方法,针对PET成像提出一新的基于图像相似结构信息的广义Gibbs先验形式,新先验能在有效地抑制噪声的同时,鲁棒地保持锐利的边缘信息.但由于新先验的引入,使得重建模型的求解趋于复杂.为解决模型解的收敛性问题,我们提出两步式的局部线化优化迭代重建策略,并结合抛物线替代坐标上升(Paraboloidal Surrogate Coordinate Ascent,PSCA)算法进行求解.新算法分别对PET模拟数据和真实数据进行重建实验,结果表明本文提出的基于广义Gibbs先验的PET成像可以获得优质的重建图像. Maximum A Posteriori (MAP) methods have been widely applied to the ill-posed problem of image reconstruc-tion,such as Positron Emission Tomography (PET) imaging. In this paper,a family of new generalized Gibbs priors based on MAP method, which exploits the basic affinity structure information in an image, is proposed. The generalized Gibbs priors can suppress noise effectively while capturing sharp edges without oscillations. A binary optimal reconstruction strategy is established using a lo-cally linearized scheme in the framework of a standard Paraboloidal Surrogate Coordinate Ascent (PSCA) algorithm. The proposed generalized Gibbs priors based MAP reconstruction algorithm has been tested on simulated and real phantom PET data. Comparisons of the new priors model with other classical methods clearly demonstrate that the proposed generalized Gibbs priors perform better in lowering the noise,and preserving the edge and detail in the image.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第4期899-903,共5页 Acta Electronica Sinica
基金 国家973重点基础研究发展规划(No.2010CB732503) 国家自然基金重点项目(No.30730036) 博士启动基金项目(No.B1000369)
关键词 正电子发射成像 最大后验重建 传统Gibbs先验 广义Gibbs先验 positron emission tomography (PET) maximum a posteriori (MAP) reconstruction traditional Gibbs prior generalized Gibbs priors
  • 相关文献

参考文献16

  • 1Bertero M, Mol C De and Pike E R. Linear inverse problems with discrete datat I: General formulation and singular system analysis[J]. Inverse Problem, 1985,1 (4) : 301 - 330.
  • 2Bertero M, Poggio T and Torre V. III posed problems in early vision[J]. Proc. IEEE, 1988,76(8) :869 - 889.
  • 3Lange K. Convergence of EM image reconstruction algorithms with Gibbs smoothness [ J ]. IEEE Transactions on Medical Imaging, 1990,9(4) :439 - 446.
  • 4Geman S and G-eman D. Stochastic relaxation, Gibbs distribution,and the Bayesian restoration of images[ J]. IEEE. Transactions on Pattern Analysis and Machine Intelligence, 1984, 6 (6) :721 - 741.
  • 5Stan Z Li. Markov Random Field Modeling in Image Analysis [ M ]. Springer-Verlag , Tokyo, 2001.
  • 6Buades A, CoU B and Morel J M. A nonlocal algorithm for image denoising[ J]. IEEE Computer Society Conference on Computer Vision and Pattem Regcognition, 2005,2: 60 - 65.
  • 7Buades A, Coil B and Morel J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling and Simulation (SIAM interdisciplinary journal) ,2005,4(2) :490- 530.
  • 8Gilboa G and Osher S. Nonlocal linear image regularization and supervised segmentation[ OL]. ftp://ftp, math. ucla. edu/pub/ camrepolX/cam06- 47. pdf, UCLA CAM Report,2006:47.
  • 9Shepp L A and Vardi Y. Maximum likelihood reconstruction for emission tomography [ J ]. IEEE Transactions on Medical Imaging, 1982,1 : 113 - 121.
  • 10RaymondH.Chan,Chung-waHo,MilaNikolova.CONVERGENCE OF NEWTON'S METHOD FOR A MINIMIZATION PROBLEM IN IMPULSE NOISE REMOVAL[J].Journal of Computational Mathematics,2004,22(2):168-177. 被引量:9

二级参考文献22

  • 1T. S. Huang, G. J. Yang, and G. Y. Tang, Fast two-dimensional median filtering algorithm, IEEE Transactions on Acoustics, Speech, and Signal Processing, 1 (1979), 13-18.
  • 2H. Hwang and R. A. Haddad, Adaptive median filters: new algorithms and results, IEEE Transactions on Image Processing, 4 (1995), 499-502.
  • 3S.-J. Ko and Y. H. Lee, Center weighted median filters and their applications to image enhancement, IEEE Transactions on Circuits and Systems, 38 (1991), 984-993.
  • 4Y. H. Lee and S. A. Kassam, Generalized median filtering and related nonlinear filtering techniques,IEEE Transactions on Acoustics, Speech and Signal Processing, 33 (1985), 672-483.
  • 5M. Nikolova, A variational approach to remove outliers and impulse noise, to appear in Journal of Mathematical Imaging and Vision, 20:1/2 (Jan. 2004).
  • 6I. Pitas and A. Venetsanopoulos, Nonlinear mean filters in image processing, IEEE Transactions on Acoustics, Speech, and Signal Processing, 34 (1986), 600-609.
  • 7G. Pok, J.-C. Liu, and A. S. Nair, Selective removal of impulse noise based on homogeneity level information, IEEE Transactions on Image Processing, 12 (2003), 85-92.
  • 8L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms,Physica D, 60 (1992), 259-268.
  • 9T. Sun and Y. Neuvo, Detail-preserving median based filters in image processing, Pattern Recognition Letters, 15 (1994), 341-347.
  • 10G. R. Arce and R. E. Foster, Detail-preserving ranked-order based filters for image processing,IEEE Transactions on Acoustics, Speech, and Signal Processing, 37 (1989), 83-98.

共引文献8

同被引文献22

  • 1Bertero M,Mol C D,Pike E R.Linear inverse problems with discrete datat I:General formulation and singular system analysis[J].Inverse Problem,1985,1(4):301-330.
  • 2Bertero M,Pogcio T A,Torre V.Ill posed problems in early vision[J].Proc IEEE,1988,76(8):869-889.
  • 3Shepp L A,Vardi Y.Maximum likelihood reconstruction for emission tomography[J].IEEE Transactions on Medical Imaging,1982,1(2):113-122.
  • 4Lange K.Convergence of EM image reconstruction algorithms with Gibbs smoothness[J].IEEE Transactions on Medical Imaging,1990,9(4):439-446.
  • 5Anderson J M,Mair B A,Rao M,Wu C H.Weighted least-squares reconstruction algorithms for positron emission tomography[J].IEEE Transactions on Medical Imaging,1997,16(2):159-165.
  • 6Leahy R M,Qi J Y.Statistical approaches in quantitative positron emission tomography[J].Statistics and Computing,2000,10(2):147-165.
  • 7Fessler J A.Penalized weighted least-squares image reconstruction for positron emission tomography[J].IEEE Transaction on Medical Imaging,1994,13(2):290-300.
  • 8Teng Y,Zhang T.Iterative reconstruction algorithms with α-divergence for PET imaging[J].Computerized Medical Imaging and Graphics,2011,35(4):294-301.
  • 9Cichocki A,Lee H,et al.Non-negative matrix factorization with α-divergence .Pattern Recognition Letters,2008,29(9):1433-1440.
  • 10Ma J H,Tian L L,Huang J,et al.Low-dose computed tomography image reconstruction by α-divergence constrained total variation minimization .Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine Conference Record .Potsdam:IEEE Press,2011.439-442.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部