期刊文献+

温室栽培条件下土壤碳库变化特征及其与养分有效性的关系 被引量:1

Soil Carbon Pool and Nutrient Status and Their Relationship Under Greenhouse Cultivation
下载PDF
导出
摘要 为揭示温室生产对土壤质量及其肥力状况的影响,选取辽宁沈阳、北宁两地具有代表性的温室为对象,通过对温室生产现状的详细调查和测土分析,研究了土壤有机碳、相关碳库指标与土壤肥力的演变特征及其相互关系,结果表明:(1)温室土壤耕层(0~20cm)有机碳及活性有机碳的含量较露地土壤有明显增加,20cm以下则逐渐降低且低于露地土壤,其中活性有机碳的增减变化是温室土壤碳库变化的主体部分,表现出随温室使用年限延长的波动变化特征。(2)温室栽培条件下,土壤碳库活度及碳库管理指数均随使用年限的延长呈先增后减的周期性变化,变化周期为4年左右,与实际生产中温室土壤的可持续利用周期具有一致性。(3)土壤活性有机碳含量与土壤速效磷、速效钾、有效硫、有效镁、有效铁和有效锌等养分因子的含量呈极显著正相关关系,其含量变化特征可为研究温室土壤肥力质量的演变提供重要参考。 By investigating the greenhouse cultivation of different region in Liaoning province and analyzing the greenhouse and open field soil samples, soil organic carbon, carbon management index and soil available nutrient and their relationship were thus studied. The results indicated: (1) the content of soil organic carbon and labile carbon in topsoil (0-20cm) of greenhouse were obviously higher than those in the corresponding open field soils and the contents fluctuated with planting years. (2) Under greenhouse cultivation, carbon pool lability and carbon management index increased in first four planting years and then decreased, which had the same trend to sustainable utilization of greenhouse. (3) The content of labile carbon significantly correlated with soil available nutrient of P, K, S, Mg, Fe and Zn and this index could sensitively reflect the impacts of different agricultural practice on soil fertility quality and its potential productivity.
出处 《中国农学通报》 CSCD 北大核心 2010年第12期316-320,共5页 Chinese Agricultural Science Bulletin
基金 国家自然科学基金重点项目(30230250) 四川省教育厅重点项目(2006A008)
关键词 温室土壤 有机碳 养分 年限 剖面 greenhouse soil soil organic carbon soil nutrient cultivated year soil profiles
  • 相关文献

参考文献12

二级参考文献222

共引文献747

同被引文献40

  • 1杨娟,王昌全,白根川,游来勇,易云亮,黄帆,李喜喜.秸秆还田下“麦-稻”轮作生产生命周期能耗及温室气体排放[J].农业环境科学学报,2015,34(1):196-204. 被引量:11
  • 2王改玲,郝明德,陈德立.秸秆还田对灌溉玉米田土壤反硝化及N_2O排放的影响[J].植物营养与肥料学报,2006,12(6):840-844. 被引量:67
  • 3Topcu S, Kirda C, Dasgan Y, et al. Yield response and N-fertiliser re-covery of tomato grown under deficit irrigation[J]. European Journal of Agronomy,2007, 26 : 64–70. DOI:10.1016/j.eja.2006.08.004.
  • 4Ju X T, Kou C L, Zhang F S, et al. Nitrogen balance and groundwater ni-trate contamination: Comparison among three intensive cropping systems on the North China plain[J]. Environmental Pollution,2006, 143 : 117–125. DOI:10.1016/j.envpol.2005.11.005.
  • 5Ju M, Shi W M, Xing G X, et al. Effects of a catch crop and reduced ni-trogen fertilization on nitrogen leaching in greenhouse vegetable production systems[J]. Nutrient Cycling Agroecosystems,2011, 91 : 31–39. DOI:10.1007/s10705-011-9441-5.
  • 6Delgado J A, Mosier A R. Mitigation alternatives to decrease nitrous oxides emissions and urea nitrogen loss and their effect on methane flux[J]. Journal of Environmental Quality,1996, 25 : 1105–1111.
  • 7Ding W X, Yu H Y, Cai Z C. Impact of urease and nitrification in-hibitors on nitrous oxide emissions from fluvo-aquic soil in the North China plain[J]. Biology and Fertility of Soils,2010, 47(1): 91–99.
  • 8Lehmann J, Gaunt J, Rondon M. Biochar sequestration in terrestrial ecosystems: A review[J]. Mitigation and Adaptation Strategies for Global Change,2006, 11(2): 403–427.
  • 9Novak J M, Busscher W J, Watts D W, et al. Short-term CO2 mineral-ization after additions of biochar and switchgrass to a typic Kandiudult[J]. Geoderma,2010, 154(3-4): 281–288. DOI:10.1016/j.geoderma.2009.10.014.
  • 10Castaldi S. Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agri-cultural light-textured soils determined by model experiment[J]. Biolo-gy and Fertility of Soils,2000, 32(1): 67–72. DOI:10.1007/s003740000218.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部