期刊文献+

基于VB的最小生成树KRUSKAL算法的实现 被引量:1

Implementation of KRUSKAL's Algorithm for Solving Minimum Spanning Tree Based on VB
下载PDF
导出
摘要 对求解加权连通无向图最小生成树的KRUSKAL算法进行了探讨,并用VB实现,同时以读取文件的方法输入图,弥补了利用面向过程的程序设计语言在求解最小生成树时输入数据的复杂性。通过可视化的形式显示无向图和最小生成树,使结果直观且容易理解。 This paper discusses the KRUSKAL's algorithm for solving the minimum spanning tree of an undirected connected weighted graph,implements it through VB programming language,and inputs the graph with data files,which overcomes the complexity of inputting data which arise from using the procedure-oriented programming language when solving the minimum spanning tree.This paper displays the graph and the minimum spanning tree by means of visualization to make the result visualized and understandable.
出处 《重庆理工大学学报(自然科学)》 CAS 2010年第4期101-104,共4页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(40871208)
关键词 加权连通无向图 最小生成树 VB undirected connected weighted graph minimum spanning tree VB
  • 相关文献

参考文献4

共引文献13

同被引文献14

  • 1Svitkina Z, Tardos E. Min-max multiway cut[C]// Lecture Notes in Computer Science 3122 :Proceedings of the 7th Interna- tional Workshop on Approximation Algorithms for Combinato- rial Optimization Problems. Heidelberg: Springer-Verlag, 2004: 207-218.
  • 2Dahlhaus E, Johnson D S, Papadimitriou C H, et al. The com- plexity of multiterminal cuts[J]. SIAM Journal on Computing, 1994,23:864-894.
  • 3Garg N, Vazirani V V, Yannakakis M. Multiway cuts in directed and node weighted graphs [C] ff Proceedings of ICALP' 94. 1994:487-498.
  • 4Calinescu G, Karloff H, Rabani Y. An improved approximation algorithm for MULTIWAY CUT[J]. Journal of Computer and System Sciences, 2000,60 (3) : 564-574.
  • 5Karger D R,Klein P N,Stein C,et al. Rounding algorithms for ageometric embedding of minimum multiway cut[J]. Mathema- tics of Operations Research, 2004,29 (3) :436-46i.
  • 6Naor J, Zosin L. A 2-approximation algorithm for the directed multiway cut problem [C] // Proceedings of the 38th Annual Symposium on Foundations of Computer Science. New York: IEEE Computer Society, 1997 : 548-553.
  • 7Ford L R,Fulkerson D R. Flows in networks[M]. New Jersey: Princeton University Press, 1962.
  • 8Papadimitriou C H, Steiglitz K. Combinatorial optimization: algorithms and complexity[M]. New Jersey: Prentice-Hall, 1982.
  • 9Bodlaender H L, Koster A M C A. Combinatorial optimization on graphs of bounded treewidth[J]. The Computer Journal, 2008,51(3) :255-269.
  • 10Kleinberg J, Tardos E. Algorithm design[M]. Boston: Addison- Wesley, 2005.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部