期刊文献+

改进支持向量机模型在城市需水量预测中的应用

Forecasting of Water Demand of City Using Improved Support Vector Machine
下载PDF
导出
摘要 以某城市需水量为研究对象,运用改进的支持向量基模型对该地区1991年到2001年的用水量进行模拟计算,并用该市2002年和2003年的用水量进行模型检验,与GM(1.1)模型所得的结果作比较,分析证明了改进的SVR模型方法能取得更好的结果。 City water used is selected as the study object. The Improvement Support vector machine method is applied to the simulation computation of the materials about water used from 1991 to 2001. The data series of 2002 -2003 are used to validate model. Compared with Gray model, the results of Improvement Support vector machine model show a better rational and available.
作者 叶少华
出处 《水利科技与经济》 2010年第5期495-497,共3页 Water Conservancy Science and Technology and Economy
关键词 需水量预测 灰色模型 支持向量机 water demand forest gray model support vector machine
  • 相关文献

参考文献4

二级参考文献34

  • 1刘隽,周涛,周佩玲.GA优化支持向量机用于混沌时间序列预测[J].中国科学技术大学学报,2005,35(2):258-263. 被引量:21
  • 2Box G E P,Jenkins G M.Time Series Analysis Forecasting and Control[M].San Francisco:Holden-Day,1976.
  • 3ASCE Task Committee.Artificial neural networks in hydrology-Ⅰ:Preliminary concepts[J].Journal of Hydrologic Engineering,2000,5(2):115-123.
  • 4ASCE Task Committee.Artificial neural networks in hydrology-Ⅱ:Hydrological applications[J].Journal of Hydrologic Engineering,2000,5(2):124-137.
  • 5Liong S Y,Sivapragasm C.Flood stage forecasting with SVM[J].Journal of the American Water Resources Association,2002,38(1):173-186.
  • 6Vapnik V.Statistical Learning Theory[M].New York:Springer,1998.
  • 7Smola A J,Schoelkopf B.A tutorial on support vector regression[J].Statistics and Computing,2004,14:199-222.
  • 8Platt J.Fast training of support vector machines using sequential minimal optimization[A].Advances in Kernel MethodsSupport Vector Learning[C].Cambridge:MIT Press,1999.185-208.
  • 9Hsu C W,Chang C C,Lin C J.A Practical Guide to Support Vector Classification[R].Technical report,Department of Computer Science and Information Engineering,National Taiwan University,2003.
  • 10Dong B,Cao C,Lee S E.Applying support vector machines to predict building energy consumption in tropical region[J].Energy and Buildings,2005,37:545-553.

共引文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部