期刊文献+

基于多尺度局部分形维的黑色素瘤轮廓不规则性描述方法 被引量:3

Descriptions of Boundary Irregularity on Melanomas Using Multi-scale Local Fractal Dimension
下载PDF
导出
摘要 黑色素瘤轮廓的不规则性是区别于良性皮肤痣的重要临床特征之一,研究皮肤肿瘤轮廓的不规则性描述对黑色素瘤计算机辅助早期诊断和治疗具有重要意义。传统分形维(FD)利用自相似度量表示轮廓的不规则性,但作为全局特征,分类能力较弱。为了探索新的多尺度下轮廓不规则程度的描述方法。提出了高斯滤波和局部分形维相结合的度量模型:两种新的轮廓结构不规则性度量和多尺度下轮廓不规则性特征描述。后者优点在于提供了图像空间不同尺度下轮廓不规则性度量的特征簇。实验分析表明,该轮廓不规则性描述子不仅增强了轮廓复杂性的细节表述,而且不同尺度提取的轮廓不规则度统计特征可有效甄别黑色素瘤和良性皮肤肿瘤。 Research on CAD based boundary-feature descriptions of skin lesions for early diagnosis and medical treatments are crucial as boundary irregularity of melanomas is one of the most important clinical indicators to discriminate lesiens from other benign moles. Conventional fraetal dimension(FD) is utilized to describe boundary complexity based on self-similarity measures. The criminative power of FDs is low due to its global property and lack of detail information. The objective of the paper is to explore new irregularity descriptors of object boundaries at different scales. In the paper, there are two novel measures: the irregularities of boundary structures and multi-scale features related to boundary roughness are described using an integrated quantitative model combining Gaussian filtering and local FDs. The advantage of the latter approach is that feature clusters of boundary irregularity are formed at different scales in the image space, so that the extracted measurements from multi-scale descriptions and different viewpoints(statistics and boundary-like roughness) can provide effective descriptors compared to the conventional FD and other boundary based methods and will be helpful for further classification tasks. Experiments show that the proposed irregular descriptors not only enhance fine expressions of boundary complexity but also can effectively discriminate melanomas among moles using statistical features of the boundary roughness at different scales.
作者 马莉
出处 《中国图象图形学报》 CSCD 北大核心 2010年第5期736-741,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60775016) 浙江省重大科技专项基金项目(2007C13062)
关键词 黑色素瘤 轮廓不规则性 多尺度局部分形维 melanomas, boundary irregularity, multiscale local fractal dimension
  • 相关文献

参考文献14

  • 1Costantino Grana,Giovanni Pellacani,Rita Cucchiara,et al.A new algorithm for border description of polarized light surface microscopic images of pigmented skin lesions[J].Journal of IEEE Transactions on Medical Imaging,2003,22(8):959-964.
  • 2Lee T K,McLean D,Atkins M S.Irregularity Index:A new border irregularity measure for cutaneous lesions[J].Journal of Medical Image Analysis,2003,7(1):470-64.
  • 3Tanaka T,Yamada R,Tanaka M,et al.A study on the image diagnosis of melanoma[C]//Proceedings of the 26th Annumal International Conference of the IEEE EMBS.San Francisco,CA,USA,IEEE Press,2004:1597-1600.
  • 4Harald Ganster,Axel Pinz.Automated melanoma recognition[J].Journal of IEEE Transactions on Medical Imaging,2001,20(3):233-239.
  • 5Jayalalitha G,Uthayakumar R.Estimating the skin Cancer using fractals[C]//Proceedings of the International Conference on Computational Intelligence and Multimedia Application (ICCIMA).Washington DC,USA:IEEE Computer Society,2007:2,306-311.
  • 6Vincent N G,Andrew Coldman.Diagnosis of melanoma with fractal dimensions[C]//Proceedings of IEEE Region 10 Conference on Computer,Communication,Control and Power Eng.Beijing,China,[s.n.]1993:514-517.
  • 7Harris Georgiou,Michael Mavroforakis,Nikos Dimitropoulos,et al.Multi-scaled morphological features for the characterization of mammographie masses using statistical classification schemes[J].Journal of Artificial Intelligence in Medicine,2007,41(8):39-55.
  • 8Khaled Taouil,Nadra Ben Romdhane.Automatic segmentation and classification of skin lesion images[C]//Proceedings of the 2nd International Conference on Multimedia Application.Penang,Malaysia,IEEE Press,2006:1-12.
  • 9Su H,Boufidane A,Crookes D.Scale adaptive complexity measure of 2D shapes[C]//Proceedings of the 18th International Conference on Pattern Recognition.Hong Kong,China:IEEE Press,2006,2:134-137.
  • 10Claridge E,Hall P N,Keefe M,et al.Shape analysis for classification of malignant melanoma[J].Journal of Biomed.Eng.,1992,14(22):229-234.

同被引文献24

  • 1张莉,孙钢,郭军.基于K-均值聚类的无监督的特征选择方法[J].计算机应用研究,2005,22(3):23-24. 被引量:29
  • 2王珂娜,邹北骥,黄文梅.一种基于神经网络的畸变图像校正方法[J].中国图象图形学报(A辑),2005,10(5):603-607. 被引量:25
  • 3Grana C, Giovanni P, Cucchiara R,et al. A new algorithm for border description of polarized light surface microscopic images of pigmented skin lesions [ J]. IEEE Trans. on Medical Imaging, 2003,22 (8) 7959-964.
  • 4Lee T K, McLean D I, Atkins M S. Irregularity index: a new border irregularity measure for cutaneous lesions [ J ]. Medical Image Analysis, 2003,7 ( 1 ) :47-64.
  • 5Jayalalitha A, Uthayakumar R. Estimating the skin cancer using fractals [ C ]//Proceeding of the International Conference on Computational Intelligence and Multimedia Applications. Sivakasi, India: IEEE,2007:307-312.
  • 6Liao Y C, Hung K C, Ku C T, et al. Wavelet octave energy for breast tumor classification on sonogTaphy: A new shape feature [ C ]// International Conference on Networking, Sensing and Control. Okayama,Japan: IEEE Press,2009:388-392.
  • 7Patwardhan S V, Dhawan A P, Relue P A. Classification of melanoma using tree structured wavelet transforms [ J ]. Computer Methods and Programs in Biomedicine, 2003,72 ( 3 ) : 223 -239.
  • 8Clawson K M, Morrow P, Scotney B, et al. Analysis of pigmented skin lesion border irregularity using the harmonic wavelet transform[ C]//Procecdings of the 13th International Conference on Machine Vision and Image Processing. Dublin, Ireland : IEEE Press, 2009:18-23.
  • 9Chiem A, Al-Jumaily A, Khushaba R N. A novel hybrid system for skin lesion detection [ C ]//Proceedings of the 3rd Intemational Conference on Intelligent Sensors, Sensor Networks and Information Processing. Melbourne, Australia: IEEE, 2007 : 567-572.
  • 10Lin K H, Guo B F, Lain K M, et al. Human face recognition using a spatially weighted modified hausdorff distance [ C ]// Proceedings of the International Symposium on Intelligent Multimedia, Video and Speech Processing. H. K. , China: IEEE Press ,2001:477-480.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部