期刊文献+

SVM性能的免疫鱼群多目标优化研究

Multi-objective optimization of an immune fish swarm algorithm to improve support vector machine performance
下载PDF
导出
摘要 SVM算法的训练精度和训练速度是衡量其性能的2个重要指标.以这2个指标为目标变量建立SVM性能多目标优化问题的数学模型,采用直接对多个目标同时进行优化的方法求得问题的Pareto近似解集.在求解Pareto近似解集时,将免疫原理中的浓度机制引入基本鱼群算法中,形成一种改进的免疫鱼群算法.以非线性动态系统仿真数据为样本数据,并采用改进的免疫鱼群算法求解SVM性能多目标优化问题的Pareto近似解集.仿真结果表明,在解决多目标优化问题时,免疫鱼群算法相对于基本鱼群算法和遗传算法具有更好的优越性. Accuracy and speed when training a support vector machine (SVM) algorithm provides critical measurements of the algorithm's performance. To optimize performance, a mathematical model of multi-objective optimization with improvements in these two parameters as goals was established. A Pareto approximate solution set was obtained by optimizing multiple targets simultaneously. In the process of finding the Pareto approximate solution set, a concentration mechanism from an immune algorithm was introduced into the basic artificial fish swarm algorithm. This produced significant improvements and resulted in the proposed immune fish swarm algorithm. Taking the non-linear dynamic system simulation data as sample data, a Pareto approximate solution set of multi-objective optimization of SVM performance was obtained using the improved algorithm. Simulation results showed that, for solving multl-objective optimization, the immune fish swarm algorithm was superior to both a basic artificial fish swarm algorithm and to genetic algorithms.
出处 《智能系统学报》 2010年第2期144-149,共6页 CAAI Transactions on Intelligent Systems
基金 黑龙江省自然科学基金资助项目(A2004-19)
关键词 支持向量机 多目标优化 Pareto近似解集 免疫鱼群算法 support vector machines multi-objective optimization Pareto approximate solution set immune fish swarm algorithm
  • 相关文献

参考文献9

  • 1刘胜,李妍妍.基于支持向量机的锅炉过热系统建模研究[J].热能动力工程,2007,22(1):38-41. 被引量:4
  • 2APNIK V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995:24-35.
  • 3SHELOKAR P S,ADHIKARI S,VAKIL R,JAYARAMAN V K.Multi-objective ant algorithm:combination of strength Pareto fitness assignment and thermodynamic clustering[J].Foundations of Computing and Decision Sciences,2000,25(4):213-229.
  • 4COELLO C A C,PULIDO G T,LECHUGA M S.Handling multiple objectives with particle swarm optimization[J].IEEE Transaction on Evolutionary Computation,2004,8(3):256-279.
  • 5张梅凤,邵诚,甘勇,李梅娟.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报,2006,34(8):1381-1385. 被引量:82
  • 6张浩然,韩正之,李昌刚.基于支持向量机的未知非线性系统辨识与控制[J].上海交通大学学报,2003,37(6):927-930. 被引量:30
  • 7VELDHUIZEN D A V,LAMONT G B.On measuring multiobjective.evolutionary algorithm performance[C]//Proceedings of the 2000 Congress on Evolutionary Computation.California,CA,USA,2000:204-211.
  • 8TAN K,LEE T,KHOR E.Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization[J].IEEE Transactions on Evolutionary Computation,2001,7 (3):565-588.
  • 9KAPUR J,KESAVAN H.Entropy optimization principles with applications[M].San Diego:Academic Press,1992:214-258.

二级参考文献22

  • 1胡国胜.支持向量机算法及应用[J].现代电子技术,2005,28(3):106-109. 被引量:21
  • 2范永胜,徐治皋,陈来九.基于动态特性机理分析的锅炉过热汽温自适应模糊控制系统研究[J].中国电机工程学报,1997,17(1):23-28. 被引量:206
  • 3Cherkassky V, Mulier F. Learning from data: concepts, theory and methods [M]. New York: John Wiley and Sons,1998.
  • 4Sjoberg J. Zhang Q. Ljung L. Nonlinear black-box modeling in system identification: a unified overview[J]. Automatica. 1995.31(12) :1691- 1724.
  • 5Vapnik V. The nature of statistical learning theory[M]. NewYork :Springer-Verlag, 1995.
  • 6Vapnik V. Statistical learning theory [M]. New York: John Wiley,1998.
  • 7Osuna E, Freund R. Training support vector machine: an application to face dection [A]. Proceedings to CVPR'97 [C]. Puerto Rico: [s. n.], 1997.130-136.
  • 8Drucker H, Wu D, Vapnik V. Support vector machine for spam categorization [J]. IEEE Trans on Neural Networks, 1999.10(5) : 1048- 1054.
  • 9Suykens K. Nonlinear modeling and support vector machines [A]. IEEE Instrument and Measurement Technology Conference [C]. Budapest : Hungary.2001.
  • 10Mukherjee S, Osuna E, Girosi F. Nonlinear prediction of chaotic time series using support vector machines [A]. Proceedings of IEEE NNSP'97 [C].Puerto Rico:[s. n.], 1997.24-26.

共引文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部