期刊文献+

离散Hopfield实现多值信号盲检测 被引量:1

Blind Multi-value Signal Detection with Discrete Hopfield Network
下载PDF
导出
摘要 传统神经网络算法局限于二值神经网络,无法解决多值信号盲检测问题。提出了基于离散Hopfield网络直接盲检测多值信号的两种算法,构造了4电平的离散激活函数。本算法不依赖统计量,建立直接盲检测发送信号的优化性能函数,利用离散Hopfield网络直接盲检测多值信号。给出新的适用于多值离散Hopfield神经网络的能量函数和网络权矩阵,理论证明该网络具有很好的稳定性。仿真结果表明本算法能快速收敛到真平衡点,盲检测效果好,适用于随机信道。 The traditional neural network algorithms are limited to two-state neurons and unable to solve the problem of blind multi-value signal detection. Two new algorithms based on discrete Hopfield network (DHNN) are proposed to blindly detect multi-value signals. A discrete 4-level signum-type activation function is constructed. Optimization performance function is constructed to blindly detect signals directly, which does not rely on the second or higher order statistics of the received signals. New weight matrixes and energy function of multi-value DHNN are given. Theoretical proof is given of the stability of multi-value DHNN. Simulation results have shown that the proposed algorithms can converge to the real equilibrium points in a few iterations so that they are applicable to blindly detecting multi-value signals in stochastic channels.
作者 张昀 张志涌
出处 《南京邮电大学学报(自然科学版)》 2010年第2期31-35,共5页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(60772060) 南京邮电大学科研基金(NY207056)资助项目
关键词 离散HOPFIELD神经网络 盲检测 多值信号 discrete Hopfield neural network(DHNN) blindly detectection multi-value signals
  • 相关文献

参考文献7

  • 1YOU C,HONGD.Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks[J].IEEE Trans on Neural Networks,1998,9(6):1442-1455.
  • 2ZHANG Xiong,LI Linshen,ZHUO Dongfeng,et al.A blind channel equalization algorithm based on feed forward neural network[C]//Proc of ICSP.Piscataway:IEEE,2004,1:335-338.
  • 3MICHEL A N,LIU D.Qualitative analysis and synthesis of recurrent neural networks[M].New York:Marcel Dekker,2002.
  • 4ZURADA J M,CLOETE I,VAN DER PAEL E.Generalized Hopfield network with multi-valued stabls slates[J].Neurocomputing,1996,13:135-149.
  • 5张志涌,BAI Erwei.SIMO含公零点信道的直接盲序列检测[J].电子学报,2005,33(4):671-675. 被引量:23
  • 6ZURADA J M.Binary Monotonic and Multiple-Valued[C]//Proc of the 30th IEEE International Symposium on Multiple-Valued Logic.Piscataway:IEEE,2000:67-74.
  • 7MUEZZINOGLU M K,GUZELIS C,ZURADA J M.A new design method for the complex-valued multistate hopfield associative memory[J].IEEE Trans on Neural Network,2003,14:891-899.

二级参考文献11

  • 1L Tong,G Xu,T Kailath.Blind channel identification and equaliztion using second-order statistics:a time-domain approach[J].IEEE Trans Inform.Theory,1994,40(3):340-349.
  • 2E Moulines,P Duhamel,J F Cardoso,S Mayrargue.Subspace methods for the blind indentification of multichannel FIR filters[J].IEEE Trans Signal Processing,1995,43(2):516-525.
  • 3D Slock.Blind fractionally-spaced equalization,perfect-reconstruction filter banks and multichannel linear prediction[A].Proc.1994 IEEE ICASSP[C].1994.4.585-588.
  • 4Z Ding.Matrix outer-product decomposition method for blind multiple channel identification[J].IEEE Trans on Signal Processing,1997,45(12):3054-3061.
  • 5G B Giannakis,C Tepedelenlioglu.Direct blind equalizers of mulitple FIR channel:a deterministic approach[J].IEEE Trans on Signal Processing,1999,47(1):62-74.
  • 6X H Li,H Fan.Linear prediction methods for blind fractionally spaced equalization[J].IEEE Trans Signal Processing,2000,48(6):1667-1675.
  • 7Z Ding,Y Li.Blind Equalization and Identification[M].New York:Marcel Dekker,2000.175-202.
  • 8Z Ding,Li Qiu.Blind MIMO channel identification from second order statistics using rank deficient channel convolution matrix[J].IEEE Trans Signal Processing,2003,51(2):535-544.
  • 9Y Y Ye.Approximating quadratic programming with bound and quadratic constraints[J].Math Program,1999.219-226.
  • 10Q Y Li,E W Bai,Y Y Ye.Channel equalization and ε-approximation algorithms[J].IEEE Trans Signal Processing,2001,49(11):2823-2831.

共引文献22

同被引文献7

  • 1张志涌,BAI Erwei.SIMO含公零点信道的直接盲序列检测[J].电子学报,2005,33(4):671-675. 被引量:23
  • 2高春圣,张志涌.基于离散Hopfield神经网络的盲信号均衡新算法[J].西安邮电学院学报,2006,11(3):38-41. 被引量:1
  • 3J. M. Zurada, S. Jankowski, A. Lozowski.Complex- Valued Multistate Neural Associative Memory[J].IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 1(6):1491-1496.
  • 4J. M. Zurada, I. Cloete,, E. van der Pael.Generalized Hopfield networks with multiple stable states[J]. Neurocomputing, 1997,13:2-4.
  • 5Hopfield J J. Neural Networks and Physical Systems Emergent Collective Computational Abilities [ J].Proc. Nat. Acad. Sci., USA, 1982, 79(4):2554-2558.
  • 6J. M. Zurada, introduction to Artificial Neural Systems.Boston, MA:PWS, 1992.
  • 7W. Feller, An introduction to Probability Theory and its Applications[M]. New York: Wiley, 1960:228-230.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部