期刊文献+

一类n阶两点边值问题三个正解的存在性 被引量:1

Existence of Three Positive Solutions for Some nth Order Two Point Boundary Value Problem
下载PDF
导出
摘要 建立了一个锥上的泛函形式的不动点定理,讨论了一类非线性项依赖低阶导数的n阶两点边值问题并得到了三个正解的存在性,最后给出了一个例子以验证前面得到的结果. A new fixed point theorem of functional type in ry value problem is considered and the existence of three a cone is established, an nth order two point bounda- positive solutions is obtained. Finally, an example is given to verify the result.
出处 《鲁东大学学报(自然科学版)》 2010年第2期117-121,共5页 Journal of Ludong University:Natural Science Edition
关键词 不动点定理 正解 n阶 两点边值问题 fixed point theorem positive solution nth order two point boundary value problem
  • 相关文献

参考文献7

  • 1Graef J R,Henderson J,Wong P J Y,et al.Three solutions of an nth order three-point focal type boundary value problem[J].Nonlinear Analysis:Theory,Methods and Applications,2008,69(10):3386-3404.
  • 2Guo Yanping,Ji Yude,Zhang Jiehua.Three positive solutions for a nonlinear nth-order m-point boundary value problem[J].Nonlinear Analysis:Theory,Methods and Applications,2008,68(11):3485-3492.
  • 3Guo Yanping,Liu Xiujun,Qiu Jiqing.Three positive solutions for higher order m-point boundary value problems[J].J Math Anal Appl,2004,289(2):545-553.
  • 4Jiang Weihua.Multiple positive solutions for nth-order m-point boundary value problems with all derivatives[J].Nonlinear Analysis:Theory,Methods and Applications,2008,68(5):1064-1072.
  • 5Liu Yuji,Ge Weigao.Positive solutions of two-point boundary value problems for 2n-order differential equations dependent on all derivatives[J].Applied Mathematics Letters,2005,18(2):209-218.
  • 6Bai Zhanbing,Ge Weigao.Existence of three positive solutions for some second-order boundary problems[J].Computers and Mathematics with Applications,2004,48(5-6):699-707.
  • 7郭大钧.非线性泛函分析(第二版)[M].济南:山东科技出版社,2004:157-158.

共引文献1

同被引文献2

  • 1葛渭高.非线性常微分方程边值问题[M]北京:科学出版社,2007.
  • 2Miroslawa Zima. Fixed point theorem of Leggett-Williams type and its application[J].Journal of Mathematical Analysis and Applications,2004,(01):254-260.doi:10.1016/j.jmaa.2004.07.002.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部