期刊文献+

一种基于小波变换特征提取的集成学习算法 被引量:1

An Ensemble Learning Algorithm Based on the Feature Extraction by Wavelet Transform
下载PDF
导出
摘要 将不同训练数据子集和不同特征子集相结合,提出了一种基于小波变换特征提取的集成学习算法Wavelet-Forests.先随机划分特征集,用小波变换提取特征子集的特征,再用小波系数重构特征集训练基分类器.使用公认的WEKA平台验证了Wavelet-Forests算法的性能,与经典算法Bagging,AdaBoost和Random Forest相比,本文所提算法具有良好的泛化能力. To combine different subsets of training data and different feature subset, a new ensemble learning algorithm is put forward based on the feature extraction by wavelet transform. To create the training data for a base classifier, the feature set is randomly split into n subsets and wavelet is applied to each subset. The com- mon platform WEKA has been used to validate the performance of Wavelet-Forests algorithm. The algorithm is superior to the classical algorithm Bagging, AdaBoost and Random Forest in comparison, and has good generali- zation ability.
出处 《鲁东大学学报(自然科学版)》 2010年第2期140-142,146,共4页 Journal of Ludong University:Natural Science Edition
基金 河南省重大科技攻关项目(08210224003)
关键词 小波变换 集成学习 特征提取 泛化能力 wavelet transform ensemble learning feature extraction generalization ability
  • 相关文献

参考文献9

  • 1Dietterich T G.Machine learning research:four current directions[J].AI Magazine,1997,18(4):97.
  • 2Breiman L.Bagging predictors[J].Machine Learning,1996,24(2):123-140.
  • 3Schapire R E.The strength of weak learn ability[J].Machine Learning,1990,5(2):197-227.
  • 4Freund Y,Schapire R E.Experiments with a new boosting algorithm[C]∥Saitta L.Proceedings of the Thirteenth International Conference on Machine Learning:San Francisco,Morgan Kai fmann,1996:148-156.
  • 5Ho T K.The random subspace method for constructing decision forests[J].IEEE Trans Pattern Analysis and Machine Intelligence,1998,20(8):832-844.
  • 6Breiman L.Random forests[J].Machine Learning,2001,45(1):5-32.
  • 7Dietterich T G,Bakiri G.Solving multiclass learning problems via error-correcting output codes[J].Artificial Intelligence Research,1995,2(1):263-286.
  • 8Zhou Zhihua,Wu Jianxin,Tang Wei.Ensembling neural networks:many could be better than all[J].Artificial Intelligence,2002,137(1-2):239-263.
  • 9Asuncion A,Newman D J.UCI machine learning repository[DB/OL].[2007-04-13].http:∥archive.ics.uci.edu/ml/.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部