期刊文献+

浸没凝胶相分离法制备聚己内酯多孔支架 被引量:2

Fabrication of poly(ε-caprolactone) porous scaffolds by immersion precipitation method
原文传递
导出
摘要 为了制备结构和性能满足骨组织工程支架要求的聚己内酯(PCL)多孔支架材料,采用浸没凝胶相分离法,以冰醋酸和丙酮为混合溶剂,水为凝固剂,壳聚糖(CS)颗粒为添加剂制得一系列PCL多孔支架。探讨了溶剂组成、PCL浓度、CS添加量对PCL多孔支架结构和性能的影响。结果表明:添加CS颗粒有利于形成多孔三维支架,随着CS含量的增加,孔隙率略微下降,抗压强度提高。随着PCL质量分数的增加,孔隙率明显下降,但抗压强度增大。当溶剂组成中丙酮含量为50 wt%-60 wt%,PCL质量分数不高于10 wt%时,通过改变CS用量,可制得孔隙率和力学性能满足骨组织工程要求的相互贯通的三维多孔支架材料。 To prepare the poly(ε-caprolactone)(PCL) porous scaffolds whose structure and property could meet the needs of bone tissue engineering,a series of PCL porous scaffolds were prepared by means of the immersion precipitation method using acetic acid and acetone as the blend solvent,distilled water as the quenching bath and chitosan(CS) as the additives.The effects of solvent,PCL concentration and the amount of CS on the structure and property were studied.The results show that the addition of CS is beneficial for forming three-dimensionally porous scaffolds.With the CS amount increasing,the porosity decreases slightly while the compressive strength improves.The porosity decreases obviously with the increasing of PCL mass fraction.When the content of acetone is 50 wt%~60 wt% and the content of PCL is below 10 wt%,three-dimensionally porous PCL scaffolds with satisfying porosity and mechanical property could form by adjusting the amount of CS.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2010年第2期43-49,共7页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(306000149,30970887) 福建省科技厅重点项目(2006I0015)
关键词 聚己内酯 壳聚糖 多孔支架 浸没凝胶相分离 polycaprolactone chitosan porous scaffold immersion precipitation method
  • 相关文献

参考文献20

  • 1Langer R, Vacanti J P. Tissue engineering[J]. Science, 1993, 260(5110), 920-926.
  • 2Hollinger J O, Leong K. Poly(alpha-hyclroxy acids) Carriers for bone morphogenetic proteins [J]. Biomaterials, 1996, 17(2): 187-194.
  • 3王海斌,赫淑倩,赵冬梅,孙康宁,刘爱红.羧甲基壳聚糖/纳米羟基磷灰石复合支架材料的制备及生物安全性[J].复合材料学报,2008,25(6):88-92. 被引量:15
  • 4Schugens C, Maquet V, Grandfils C, et al. Biodegradable macroporous polylactide implants for cell transplantation I : Preparation of polylactide foams by solid-liquid phase separation[J].Polymer, 1996, 37(6): 1027-1038.
  • 5肖秀峰,黄琼瑜,刘榕芳,佘厚德,林宗琼.纳米羟基磷灰石/聚合物多孔复合支架材料[J].复合材料学报,2008,25(6):39-46. 被引量:12
  • 6Whang K, Thomas C H, Healy K E, Nuber G. A novel method to fabricate bioabsorbable scaffolds [J].Polymer, 1995, 36(4): 837-842.
  • 7Whang K, Tsai D C, Nam E K, et al. Ectopie bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds [J]. J Biomed Mater Res, 1998, 42(4): 491-499.
  • 8Coombes A G A, Heckman J D. Gel casting of resorbable polymers part 1: Processing and applications [ J ]. Biomaterials, 1992, 13(4): 217-224.
  • 9Nam Y S, Yoon J J, Park T G. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive [J].J Biomed Mater Res, 2000, 53(1): 1-7.
  • 10Wu Hua, Wan Ying, Cao Xiaoying. Fabrication of chitosan- g- polycaprolactone copolymer scaffolds with gradient porous microstructures [J]. Materials Letters, 2008, 62(17/18): 2733-2736.

二级参考文献89

共引文献149

同被引文献27

  • 1Chen X, Meng Y, Li Y, et al. Investigation on bio-mineralization of melt and sol-gel derived bioactive glasses [J]. Appl Surf Sci, 2008, 255(2): 562-564.
  • 2Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution [J]. Biomaterials, 2009, 30(12): 2175-2179.
  • 3Yu H, Matthew H W, Wooley P H, et al. Effect of porosity and pore size on microstructures and mmechanical properties of poly-ε-caprolactone-hydroxyapatite composites [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008, 86(2): 541-547.
  • 4Yu H Y, Vandevord P J, Mao L, et al. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization [J]. Biomaterials, 2009, 30(4): 508-517.
  • 5顾其胜, 侯春林, 徐政主. 实用生物医学材料 [M]. 上海: 上海科学技术出版社, 2005: 67.
  • 6Niemela T, Niiranen H, Kellomaki M. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents: Part Ⅱ—In vitro degradation [J]. Acta Biomater, 2008, 4(1): 156-164.
  • 7Jaakkola T, Rich J, Tirri T, et al. In vitro Ca-P precipitation on biodegradable thermoplastic composite of poly-(ε-caprolactone-co-dl-lactide) and bioactive glass (S53P4) [J]. Biomaterials, 2004, 25(4): 575-581.
  • 8Wang K, Li W W, Gao C. Poly(epsilon-caprolactone)-functionalized carbon nanofibers by surface-initiated ring-opening polymerization [J]. J Appl Polym Sci, 2007, 105(2): 629-640.
  • 9Hench L L, Polak J M. Third-generation biomedical materials [J]. Science, 2002, 295(5557): 1014-1017.
  • 10Hench L L. Genetic design of bioactive glass [J]. Journal of the European Ceramic Society, 2009, 29(7): 1257-1265.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部