期刊文献+

基于PLS的Elman神经网络算法研究 被引量:10

Elman Neural Network Algorithm Based on PLS
下载PDF
导出
摘要 针对特征变量多的小样本,结合偏最小二乘(Partial Least Squares,PLS)法则原理与Elman神经网络结构性质,提出基于PLS的Elman神经网络算法(PLSElman).新算法通过PLS对高维小样本进行特征降维时,顾及了与因变量的相关程度,所得到的数据进行网络训练和仿真,明显的简化了网络结构,且可得较精确的网络模型.通过实例分析,结果表明新算法提高了网络的收敛速度、预测的精准率,证明新算法提高网络处理问题的效率.同时为便于验证新算法的有效性,与基于主成分分析(Principal Component Analys,PCA)的Elman神经网络算法(PCAElman)进行了比较,PLSElman算法有明显的优越性. As to small size samples which have many characteristic variables, when Partial Least Squares (PLS) principle and structural properties of Elman neural network are taken into account, PLS-Eiman is put forward. The new algorithm, when carry- ing feature reduction on high-dimensional and small size sample, takes its relativity to dependent variable into account. Obtained data carries on network training and simttlation, clearly simplifies network structure and can get more precise network models. According to case analysis, the result shows that new algorithm improves convergence rate of the network, the predicting precision and proves that new algorithm improves the efficiency of the dealing with problems of the network. In the meantime,in order to test the effec- tiveness of new algorithm, it is compared with Elman neural network algorithm based on Principal Component Analysis (PCA-E1- man) and it is observed that PLS-Elman algorithra has more advantages.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第B02期71-75,共5页 Acta Electronica Sinica
基金 江苏省基础研究计划(自然科学基金)(No.NBK2009093) 国家自然科学基金(No.60975039) 中国科学院智能信息处理重点实验室开放基金项目(No.IIP2006-2)
关键词 ELMAN神经网络 偏最小二乘法 PLS-Elman算法 主成分分析 elman neural network PLS PLS-elman algorithm PCA
  • 相关文献

参考文献13

  • 1Mccllochw S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics,1943,10(5):115 - 133.
  • 2Elman J L. Finding structure in lime[ J]. Cogni-tive Science, 1990,14(2) : 179 - 211.
  • 3Melchiorre C, Matteucci M, Azzoni A, et al. Artificial neural networks and cluster analysis in landslide susceptibility zonation [J].Geomorphology, 2008,94(3) : 379 - 400.
  • 4Lewis E, Sheridan C, Farrell M O, et al. Principal component analysis and artificial neural network based approach to analysing optical fibre sensors signals[J]. Sensors and Actuators A: Physical, 2007,136( 1 ) : 28 - 38.
  • 5Kevin R J, Simon X Y, Roger R H. Pork farm odour modelling using multiple-component multiple-factor analysis and neural networks[J].Applied Soft Computing, 2005,6(1) :53 - 61.
  • 6王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,2000.
  • 7丁世飞,靳奉祥,史忠植.基于PLS的信息特征压缩算法[J].计算机辅助设计与图形学学报,2005,17(2):368-371. 被引量:7
  • 8Gopi E S. Digital image forgery detection using artificial neural network and independent component analysis [J].Applied Mathematics and Computation, 2007,194(2 ) : 540 - 543.
  • 9Li Rui-hua,Meng Guo-xiang, Gao Nai-kui, et al. Combined use of partial least-squares regression and neural network for residual life estimation of large generator stator insulation[J]. Measurement Science and Technology, 2007,18(7):2074- 2082.
  • 10骆中华,刘瑞兰,苏宏业,屈利娟.基于PLS快速剪枝法的RBF神经网络软测量模型建模方法和应用[J].化工自动化及仪表,2005,32(3):19-21. 被引量:5

二级参考文献38

共引文献30

同被引文献109

引证文献10

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部