期刊文献+

基于对比敏感度和马尔可夫链的注意信息提取算法 被引量:3

Extracting Attention Information Algorithm Based on Contrast Sensitivity and Markov Chain
下载PDF
导出
摘要 借鉴生理学的研究成果,提出了一种新的基于对比敏感度和马尔可夫链的视觉注意信息提取算法.在注意特征向量提取之前,先用与离心率有关的对比敏感度函数对输入的图像进行加权,用以模拟视网膜神经节的反应机制;在特征向量上定义马尔可夫链,用它的平稳分布做为活动图上的显著度.算法的平均计算时间和以神经生物学家的研究成果为标准计算的接受者操作特性曲线下面积证明了算法的有效性. Inspired by the research in physiology, a novel algorithm for extracting bottom-up attention information (integra- tion of contrast sensitivity and Markov chain, ACSMC) is proposed in this paper. In our algorithm, the original image is weighted with a contrast sensitivity formula which is a ftmction retinal eccentricity to simulate the mechanism of retinal ganglion. A Markov chain is defined on feature maps. The equilibrium distribution of this chain is taken as saliency values. The average of algorithm cost time and area under receiver operating characteristic curve (AUROC) based on the research of neurobiologist demonstrate its effec- tiveness.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第B02期213-217,共5页 Acta Electronica Sinica
基金 高等学校博士学科点专项科研基金项目(No.20050183032) 吉林省教育厅科学基金项目(No.2004150)
关键词 视觉注意 视觉显著性 对比敏感度 马尔可夫链 visual attention visual saliency contrast sensitivity Markov chain
  • 相关文献

参考文献11

  • 1L Itti, C Koch E Niebur. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20( 11 ) : 1254 - 1259.
  • 2L Itti. Models of bottom-up attention and saliency[A]. IL. Itti ed. Neurobiology of attention [ C ]. San Diego, CA: Elsevier, 2005. 576 - 582.
  • 3C Siagian, L Itti. Rapid biologically-inspired scene classification using features shared with visual attention [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (2) :300 - 312.
  • 4L Itfi, C Koch. A saliency-based search mechanism for overt and covert shifts of visual attention[J]. Vision Research, 2000, 40( 10 - 12) : 1489 - 1506.
  • 5D Parkhurst, K Law, E Niebur. Modeling the role of Salience in the allocation of overt visual attention [J]. Vision Research, 2002,42(1):107 - 123.
  • 6J Harel, C Koch, P Perona. Graph-based visual saliency [J]. Advances in Neural Information Processing Systems, 2007,19: 545 - 552.
  • 7N Bruce, J Tsotsos. Saliency based on information maximization[J].Advances in Neural Information Processing Systems,2006,18:155 - 162.
  • 8邵静,高隽.基于协同感知的视觉选择注意计算模型[J].中国图象图形学报,2008,13(1):129-136. 被引量:7
  • 9田媚,罗四维,黄雅平,赵嘉莉.基于局部复杂度和初级视觉特征的自底向上注意信息提取算法[J].计算机研究与发展,2008,45(10):1739-1746. 被引量:6
  • 10W S Geisler, J S Perry. A real-time foveated multiresolution system for low-bandwidth video communication [ J ]. Human Vision and Electronic Imaging, Proc. SPIE, 1998,3299: 294 - 305.

二级参考文献18

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2邹琪,罗四维,郑宇.利用多尺度分析和编组的基于目标的注意计算模型[J].电子学报,2006,34(3):559-562. 被引量:5
  • 3田媚,罗四维,齐英剑,廖灵芝.基于视觉系统“What”和“Where”通路的图像显著区域检测[J].模式识别与人工智能,2006,19(2):155-160. 被引量:4
  • 4Itti L, Koch C. Computational modeling of visual attention [J]. Nature Reviews of Neuroscience, 2001, 2(3) : 194-230
  • 5Navalpakkam V, Itti L. An integrated model of top-down and bottom-up attention for optimal object detection [C] // Proc of IEEE Conf on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2006
  • 6Siagian C, Itti L. Rapid biologically-inspired classification using features shared with visual attention [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(2): 300-312
  • 7Iyer A, Itti L, Koch C. Components of bottom-up gaze allocation in natural images [J]. Vision Research, 2005, 45 (8) : 2397-2416
  • 8Tian M, Luo S W, Liao L Z, et al. "What" and "Where" information based attention guidance model [C] //Proc of the 2nd Int Conf on Natural Computation. Berlin: Springer, 2006
  • 9Rybak I A, Gusakova V I, Golovan A V, et al. A model of attention guided visual perception and recognition [J]. Vision Research, 1998, 38(15-16) : 2387-2400
  • 10Wiskott L, vonder Malsburg C. Face recognition by dynamic link matching [OL] //Sirosh J, Miikkulainen R, Choe Y, eds. Lateral Interactions in the Cortex: Structure and Function. (1996) [2007-01-02]. http://www. es. utexas. edu/-nn/web-pubs/htmlhook96/wiskott/

共引文献10

同被引文献45

  • 1Rutishauser U,Walther D,Koch C, et al . Is bottom-up attentionuseful for object recognition? [ A]. TFRR Conference on Com-puter Vision and Pattern Recognition [C] . Washington: TEEEPress,2004.37 - 44.
  • 2Han J W,Ngan K N,Ii M J,et al. Unsupervised extraction ofvisual attention objects in color images [j]. IEEE Transactionson Circuits and Systems for Video Technology, 2006,16(1):141-145.
  • 3Wang Z,Lu L G,Bovik A C.Foveation scalable video codingwith automatic fixation selection[j]. TEEE Transactions on Im-age Processing,2003,12(2) :243 - 254.
  • 4Chen T,Cheng M M,Tan P,et al. Sketch2Photo:internet imagemontage[J] .ACM Transactions on Graphics,2009,28(5) : 1 -10.
  • 5Koch C, Ullman S. Shifts in selective visual attention: towardsthe underlying neural circuitry [j]. Human Neurobiology, 1985,4(4):219-227.
  • 6ltd L,Koch C,Niebur E. A model of saliency-based visual at-tention for r^id scene analysis [j]. IEEE Transactions on Pat-tern Analysis and Machine Intelligence, 1998,20(11) : 1254 -1259.
  • 7Treisman A M,Gelade G.A feature-integration theory of atten-tion[j].Cognitive Psychology, 1980,12(1) :97 - 136.
  • 8Brnce N D B,Tsotsos J K. Saliency, attention, and visualsearch: An information theoretic approach [j]. Journal of Vi-sion,2009,9(3) : 1 - 24.
  • 9Zhang L Y,Tong M H,Marks T K, et al. SUN: A Bayesianframework for saliency using natural statistics[ J]. Journal ofVision,2008,8(7):l-20.
  • 10Harel J,Koch C,Perona P. Graph-based visual saliency [A].Advances in Neural Information Processing Systems[C] .Van-couver :MIT Press,2007.545 - 552.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部