期刊文献+

表面等离子体激元透镜设计及其数值计算 被引量:8

Design and numerical simulation of plasmon polariton nanolens
下载PDF
导出
摘要 提出了一种新的表面等离子体激元透镜的设计方案,该方案通过在两个亚波长小孔的外表面放置电介质光栅实现对入射光束的有效会聚。利用遗传算法研究了波导中表面等离子体激元的色散关系,结果表明,通过调节亚波长小孔的宽度和介电常数可以有效地调控有效折射率,从而实现对亚波长金属平板波导结构中表面等离子体激元传播特性的调控。利用时域有限差分方法(FDTD)结合完美匹配层(PML)边界条件数值模拟了此结构中的光场分布,讨论了光栅周期数对成像特性的影响,从而深入理解了纳米聚焦效应的物理机制。结果显示,随着表面光栅数的增多,焦距和焦斑大小都在增加。光栅数从5增加至11时,焦距由1.715μm增大至2.325μm,焦斑大小由0.615μm增大至1.715μm,这一结构有可能被用作未来集成光路中的纳米聚焦器件。 A novel plasmon polariton nanolens formed by two subwavelength metal slits surrounded by surface dielectric gratings is proposed and demonstrated numerically.The dispersion characteristics of surface plasmon polaritons (SPPs) in a metal waveguide are studied by using genetic algorithm,which shows that the effective index can be adjusted effectively by changing the widths and dielectric constants of these slits,and the propagation of SPPs can be controlled further.By combining the Finite-difference Time-domain (FDTD) method with Perfect-matching Layer (PML) absorbing boundary conditions,the distribution of optical field in the lens structure is simulated and the effect of number of surface gratings on imaging characteristics is discussed.Experiments show that the focal length and width are increased with the increase of number of the surface gratings.When the number of the surface gratings increases from 5 to 11,the focal length increases from 1.715 μm to 2.325 μm and the focal width increases from 0.615 μm to 1.715 μm.Results show that this lens structure can be availabe for the future integrated optics.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2010年第4期831-835,共5页 Optics and Precision Engineering
基金 淮海工学院科研启动基金资助项目(No.KQ08027) 淮海工学院自然科学课题资助项目(No.KX08039) 江苏省教育厅2008年度高校"青蓝工程"中青年学术带头人培养对象资助项目
关键词 金属波导 表面等离子体激元透镜 亚波长小孔 时域有限差分法 metal waveguide surface plasmon polariton nanolens subwavelength slit Finite-difference Time-domain(FDTD) method
  • 相关文献

参考文献13

  • 1RAETHER H.Surface plasmon on smooth and rough surfaces and on gratings[M].Springer-Verlag,1988.
  • 2BARNES W L,DEREUX A,EBBESEN T.Surface plasmon subwavelength optics[J].Nature,2003,424(8):824-830.
  • 3EBBESEN T,LEZEC H J,GHAEMI H F,et al..Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature,1998,391(2):667-669.
  • 4KREEN J R,LAMPRECHT B,DITLBACHER H,et al..Non-diffraction-limited light transport by gold nanowires[J].Europhys.Lett,2002,60(5):663-669.
  • 5MAIE S A,KIK P G,ATWATER H A,et al..Local detection of electromagnetic energy below the diffraction limit in metal nanoparticle plasmon waveguides[J].Nature Materials,2003,2(4):229-232.
  • 6WANG B,WANG G P.Surface plasmon polariton propagation in nanoscale metal gap waveguides[J].Opt Lett.,2004,29(17):1992-1994.
  • 7WANG C T,DU C L,LV Y G,et al..Surface electromagnetic wave excitation and diffraction by subwavelength slit with periodically patterned metallic grooves[J].Opt.Express,2006,14(12):5671-5681.
  • 8WANG B,WAGN G P.Plasmon bragg reflectors and nanocavities on flat metallic surfaces[J].Appl Phy Lett,2005,87(1):013107-1-013107-3.
  • 9REUVEN G,ALEXANDRE G B.Increased cut-off wavelength for a subwavelength hole in a real metal[J].Opt.Express,2005,13(6):1933-1938.
  • 10OKONIEWSKI M,MROZOWSKI M,STUCHLY M A.Simple treatment of multi-term dispersion in FDTD[J].IEEE Microwave and Guided Wave Letters,1997,7(5):121-123.

二级参考文献24

共引文献5

同被引文献70

  • 1徐琰,颜树华,周春雷,张军.昆虫复眼的仿生研究进展[J].光学技术,2006,32(z1):10-12. 被引量:26
  • 2张敏,王泽秀,黄承彩.Hg_(1-x)Cd_xTe双色红外探测器装配工艺[J].红外技术,1996,18(5):8-10. 被引量:1
  • 3汤炳书,沈廷根.激励源对二维光子晶体传输特性的影响[J].激光与红外,2006,36(4):295-297. 被引量:2
  • 4汤炳书.可见光区一维光子晶体纳米膜偏振带通滤波器的设计[J].光电工程,2007,34(5):33-37. 被引量:8
  • 5ROBERT D G,ROBERT J S,DANIEL E P.Optical antenna: Towards a unity efficiency near-field optical probe [J].Appl.Phys.Lett.,1997,70(11):1354-1356.
  • 6CROZIER K B, SUNDARAMURTHY A, KINO G S, et al..Optical antenna : Resonators for local field enhancement [J].J.App Phys.2003,94(7): 4632-4642.
  • 7MUHLSCHLEGEL P, EISLER H J, MARTIN O J F, et al..Resonant optical antennas [J].Science, 2005,308(5728):1607-1609.
  • 8CUBUKCU E, KORT E A, CROZIER K B, et al..Plasmonic laser antenna [J].Appl.Phys.Lett.,2006, 89(9):093120-093123.
  • 9KOHOUTEK J, GELFAND R M, BONAKDAR A, et al..Composite nano-antenna integrated with quantum [J].Photonics Technology Letters, IEEE,2010,22(21):1580-1582.
  • 10CHAU Y F, YEH H H,TSAI D P.A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric hole [J].Journal of Electromagnetic Waves and Applications ,2010,24(11): 1621-1632.

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部