期刊文献+

时滞三元离散神经网络模型的稳定性与分岔分析 被引量:1

Stability and Bifurcation of a Three-dimension Discrete Neural Network Model with Delay
下载PDF
导出
摘要 研究了一类时滞三元离散神经网络模型,讨论其九种不同的连接形式并且运用离散动力系统Hopf分支理论和扩展的Jury判据理论对模型的特征方程根的分布进行分析,研究了模型的平衡点的稳定性及其分支周期解的存在性.最后通过数值模拟验证了所得结果的正确性. Nine different types of three-dimension discrete neural network model with delay is considered.We derive some sufficient and necessary conditions on the asymptotic stability of the zero solution.In addition,it is found that there exists a Hopf bifurcation when the parameter passes some critical values by using Extensional Jury Criterion.Finally,computer simulations are performed to support the theoretical predictions.
作者 杨巍 张春蕊
出处 《哈尔滨理工大学学报》 CAS 北大核心 2010年第2期58-62,共5页 Journal of Harbin University of Science and Technology
基金 2006-2008年度黑龙江省博士后科研基金
关键词 离散神经网络 稳定性 HOPF分支 Jury判据 周期解 discrete neural network stability Hopf bifurcation Jury criterion periodic solution
  • 相关文献

参考文献5

  • 1GUO S J,TANG X H,HUANG L H.Stability and Bifurcation in Discrete System of Two Neurons with Delaysp[J].Nonlinear Analysis:Real World Applications,2008(9):1323-1335.
  • 2ZHANG C R,ZHENG B D.Stability and Bifurcation of a two-dimension Discrete Neural Network Model with Multi-delays[J].Chaos,Solitons and Fractals,2007,31:1232-1242.
  • 3MARIA da Conceicao A Leite,Martin Golubitsky,Homogeneous three-cell networks[J].Nonlinearity,2006,19:2313-2363.
  • 4ZHENG B D,LIANG L J,ZHANG C R,Extended Jury Criterion[J].Science in China Series A:Mathematics,2009,821(9):89-96.
  • 5YURI A K.Elements of Applied Bifurcation Theory[M].Springer-Verlag,New-York,1995.

同被引文献16

  • 1ZHENG BaoDong 1,LIANG LiJie 1 & ZHANG ChunRui 2 1 Department of mathematics,Harbin Institute of Technology,Harbin 150001,China,2 Department of mathematics,Northeast Forestry University,Harbin 150040,China.Extended Jury criterion[J].Science China Mathematics,2010,53(4):1133-1150. 被引量:4
  • 2NevilleJFord,VolkerWulf.Theuseofboundarylocusplotsintheidentificationofbifurcationpointinnumericalapproximationofdelaydifferentialequations[].JCAM.1999
  • 3LAMBERT J D.Numerical method for ordinary differential equations[]..1991
  • 4Iooss,G. Bifurcation of maps and applications . 1979
  • 5C.R. Zhang,B.D.Zheng.Stability and bifurcation of a two-dimension discrete neural network model with multi-delays[].Chaos Solitons Fractals.2007
  • 6Guo S J.Stability and bifurcation in discrete system oftwo neurons with delaysp[].Nonlinear Analysis:Real World Applications.2008
  • 7Maria da Conceicao A L.Homogeneous three-cellnetworks[].Nonlinearity.2006
  • 8Guo Shangjiang.Stability and bifureation in a diseretesystem of two neurons with delays[].NonlinearAnalysis:Real Wbrld Applieations.2008
  • 9Ford N J,Wulf V.Hopf bifurcation for numericalapproximations to the delay logistic equation[].International Journal of Applied Science andComputations.1999
  • 10Ford N J,Wulf V.Numerical Hopf bifurcation for aclass of delay differential equations[].JCAM.2000

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部