摘要
研究的模糊值函数是定义在模糊数集E1(所有的模糊数的集合)上,取值于E1中的模糊数的函数.把所有的关于y轴对称的模糊数都定义为零模糊数,则两个相同的模糊数的差为零,利用r-+r+这样一个数值来描述模糊数的序关系,就可以得到:关于纵向对称的模糊数都是等同的.在新的序关系意义下,定义了模糊值函数的极限,并讨论模糊值函数的收敛性质及Cauchy收敛判别法等.
In this paper fuzzy-valued functions mean that the functions are defined in fuzzy numbers field E1(the set of all fuzzy numbers) and take values in E1.The author defines all fuzzy number which are symmetric respect to y axis as zero fuzzy number,then the difference of two same fuzzy number is zero fuzzy number.The fuzzy number order relation is described by value ar-+ ar+.Then we obtain that the fuzzy numbers which are symmetric with y axis are same.The limits of fuzzy number valued function is discussed under the new order relation.The properties of convergence and Cauchy criterion of fuzzy number valued function are also studied.
出处
《哈尔滨理工大学学报》
CAS
北大核心
2010年第2期76-78,82,共4页
Journal of Harbin University of Science and Technology
基金
黑龙江省教育厅科学技术研究项目(11544033)
关键词
模糊数
模糊值函数
模糊值函数的收敛性
fuzzy number
fuzzy value function
properties of convergence of fuzzy number valued function