摘要
引入中心自共轭矩阵的定义,给出了中心自共轭矩阵的代数和、转置、积(幂及张量积)以及伴随矩阵也是中心自共轭矩阵的结论.得出当δ(A)=δ((?)),以及当V是n阶翻矩阵,λ_0∈δ(A),0≠X_0=(a_1,a_2,…,a_n)~T∈C^n,AX_0=λX_0时,有(?)VX_0=λX_0等论断.
The concept of centro self-conjugate matrix was introduced.The results that the algebra addition, transpose,product(power and tensor product) of centro self-conjugate matrices and conclucion that the adjoint matrix of a centro self-conjugate matrix are still centro self-conjugate matrices were obtained. Moreover,the assertion thatδ(A) =δ(A) and when A =n grade flig matrix,λ_∈δ(A),0≠X_0 =(a1,a2,…,an) ^T∈Cn,AX0 =λX0,AVX0 =λX0 were also investigated.
出处
《郑州轻工业学院学报(自然科学版)》
CAS
2010年第1期117-119,共3页
Journal of Zhengzhou University of Light Industry:Natural Science
基金
河南省自然科学基金项目(0611053000)
河南教育厅自然科学基金项目(2008A110023)
关键词
中心自共轭矩阵
翻转矩阵
伴随矩阵
张量积
centro self-conjugate matrix
flip matrix
adjoint matrix
tensor product