期刊文献+

Engel连分数中一个例外集的Hausdorff维数

HAUSDORFF DIMENSION OF AN EXCEPTIONAL SET IN ENCEL CONTINUED FRACTION EXPANSION
下载PDF
导出
摘要 本文研究了Engel连分数展式中部分商以某种速度增长的集合的Hausdorff维数.利用自然覆盖和质量分布原理,得到了集合B(α)={x∈(0,1):■ log b_(n+1)(x)/log b_n(x)=α}的Hausdorff维数是1/α的结果. In this article,we study the Hausdorff dimension of an exceptional set determined by partial quotients in its Engel continued fraction expansion.By using natural covering system and principle of mass distribution,we get the result that the Hausdorff dimension of the set B(α) = {x∈(0,1):■ log b_(n+1)(x)/log b_n(x) =α} is 1/α.
作者 胡学海
出处 《数学杂志》 CSCD 北大核心 2010年第3期516-520,共5页 Journal of Mathematics
关键词 Engel连分数展式 HAUSDORFF维数 Engel continued fraction expansion Hausdorff dimension
  • 相关文献

参考文献4

  • 1Hartono Y,Kraaikamp C,Schweiger F.Algebraic and ergodic properties of a new continued fraction algorithm with non-decreasing partial quotients[J].J.Theor.Nombres Bordeaux,2002,14(2):497-516.
  • 2Kraaikamp C,Wu Jun.On a new continued fraction expansion with non-decreasing partial quotients[J].Monatsh.Math.,2004,143(4):285-298.
  • 3Good I J.The fractional dimensional theory of continued fractions[J].Proc.Camb.Philos.Soc.,1941,37:199-228.
  • 4Falconer K J.Techniques in fractal gemetry[M].New York:John Wiley,1997.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部