摘要
本文研究了学习理论中推广误差的界的问题.利用ε不敏感损失函数的性质,分别获得了逼近误差和估计(样本)误差的界,并在特定的假设空间上得到了学习算法推广误差的界.
In the article,we investigate the bound of the generalization error in learning theory.By using the property ofεinsensitive loss function,we establish the estimates of the approximation error and the estimation error respectively,then in specific hypothesis space,we get the bound of the generalization error of learning algorithm.
出处
《数学杂志》
CSCD
北大核心
2010年第3期527-532,共6页
Journal of Mathematics
基金
国家自然科学基金资助项目(70671050)
关键词
推广误差
ε不敏感损失函数
逼近误差
估计误差
generalization error
εinsensitive loss function
approximation error
estimation error