期刊文献+

关于RSA的k阶不动点 被引量:1

ON FIXED POINTS OF ORDER k OF RSA
下载PDF
导出
摘要 本文研究了RSA密码系统一个初步的动力分析.利用Mbius反转公式,我们给出了RSA密码系统的k阶不动点的数目公式,从而解决了文献[8,9]中的问题. This article is to give an elementary dynamical analysis on the RSA cryptosystem. By using Mbius inversion,we give computational formulae of the number of the fixed points of order k of the RSA cryptosystem.As a result,we solve the problem in[8,9].
作者 张韶华
出处 《数学杂志》 CSCD 北大核心 2010年第3期551-553,共3页 Journal of Mathematics
基金 国家973项目基金资助(2007CB807902) 山东省自然科学基金资助(Y2008G23)
关键词 RSA k阶不动点 不动点攻击 动力分析 RSA fixed points of order k fixed points attack dynamical analysis
  • 相关文献

参考文献2

二级参考文献8

  • 1潘承洞 潘承彪.解析数论基础[M].北京:科学出版社,1997.98-101.
  • 2[1]Koblitz N. A Course in Number Theory and Cryptography. New York: Springer-Verlag, 1987
  • 3[2]Tilborg H. An Introduction to Cryptology. Boston: Kluwer, 1987
  • 4[3]Lramalos E. Primality and Cryptography. New York: John Wiley & Sons, 1986
  • 5[4]Hardy G H, Wright E M. An Introduction to the Theory of Number Theory. Oxford, 1981
  • 6van Tilborg H. An Introduction to Cryptography. Boston: Kluwer Academic Publishers,1987
  • 7Hardy G H, Wright E M. An Introduction to the Theory of Numbers. 5th ed. Oxford: Oxford Press, 1981
  • 8徐秋亮.改进门限RSA数字签名体制[J].计算机学报,2000,23(5):449-453. 被引量:63

共引文献4

同被引文献14

  • 1袁晓宇,张其善.基于智能卡的RSA数字签名实现关键问题解析[J].电子学报,2004,32(11):1897-1900. 被引量:11
  • 2Diffie W,Hellman M E. New Directions in Crypto-graphy[J].IEEE Transactions on Information theory,1976,(06):644-654.
  • 3Rivest R L,Shamir A,Adleman L. A Method for Obtaining Digital Signatures and Public Key Crypto Systems[J].Communications of the ACM,1978,(02):120-126.
  • 4Fischlin R,Schnorr C P. Stronger Security Proofs for RSA and Rabin Bits[J].Journal of Cryptology,2000,(02):221-244.
  • 5Boneh D. Twenty Years of Attacks on the RSA Crypto-system[J].Notices of the American Mathematical Society,1999,(02):203-213.
  • 6柯召;孙琦.数论讲义[M]北京:高等教育出版社,1999.
  • 7Shoup V. A Computational Introduction to Number Theory and Algebra[M].[S.1.]:Cambridge University Press,2005.
  • 8闵嗣鹤;严士健.初等数论[M]北京:高等教育出版社,2003.
  • 9Ateniese G,Camenisch J,Jo M Y. A Practical and Provably Secure Coalition Resistant Group Signature Scheme[A].Santa Barbara,USA:[s.n.],2000.
  • 10Williams H C,Schmid B. Some Remarks Concerning the M.I.T.Public-key Cryptosystem[J].Tidskrift for Informations Bechandling,1979.525-538.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部