摘要
应用待定系数法和权函数法给出了在实数域R上求解非线性方程单根的2类新的四阶方法.考虑了计算效率,本方法每步需要计算1个函数值,2个导数值,效率指数为1.587.通过新方法与牛顿法及其他已知方法的比较,结果表明新方法具有一定的优越性.
Two new families of fourth order methods are developed for finding the simple roots of nonlinear equations in R by using the methods of undetermined coefficients and weight functions. In terms of computational cost, they require evaluations of only one function and two first derivatives per iteration. This implies that the efficiency index of the new methods is 1. 587. The new methods are comparable with Newton method and other existing methods, as shown in the illustration examples.
出处
《郑州轻工业学院学报(自然科学版)》
CAS
2010年第2期110-114,共5页
Journal of Zhengzhou University of Light Industry:Natural Science
基金
The National Science Foundation of China(10701066)
Basic and Cutting-edge Technology Research Projects of Henan Province (092300410137)
The Natural Science Foundation of Henan Education Committee(2008-755-65)
The NationalScience Foundation of the Education Department of Henan province (2008A110022)
关键词
四阶收敛
非线性方程
Jarratt方法
迭代方法
权函数
待定系数法
fourth order convergence
non-linear equations
jarratt method
iterative methods
weight function
undetermined coefficient method