期刊文献+

一维方势阱束缚态能量本征值的MATLAB行列式分析及广义量子数概念 被引量:4

Analysis of Bound State Energy Eigenvalue of One-dimensional Square Potential Well with MATLAB Determinant and Concept of Generalized Quantum Number
下载PDF
导出
摘要 在计算一维方势阱束缚态能量本征值时,基于边界连续性条件,可将相关波函数展开为一个以矩阵形式描述的线性方程组。根据能量本征值必须满足该方程组的系数行列式等于零的要求,在能量区间内逐点扫描,即可确定相应的能量本征值。与其他方法如递推法、转移矩阵法相比,该方法不需要花费较多精力进行编程,具有概念简单、使用方便、实用性强等特点。此外,类似于无限深势阱下定义的量子数概念,可以定义一个广义量子数来描述有限深势阱中能量本征值的分布情况。 In the calculation of the bound state energy eigenvalues of a one-dimensional square potential well,related wave functions can be extended into the linear equations described by a matrix form according to the boundary continuity conditions.Since the energy eigenvalues should satisfy the requirement that the coefficient determinant equals to zero,the corresponding energy eigenvalues can be determined by scanning the energy region point by point.Compared with other methods such as iterative methods and transfer matrix methods etc.,this method is simple in programming and concept,convenient in operation and practical.Besides,like the concept of quantum number defined in the case of an infinite deep square potential well,the distribution of the energy eigenvalues in the finite deep square potential well can be described by defining a generalized quantum number.
机构地区 昆明物理研究所
出处 《红外》 CAS 2010年第5期41-45,共5页 Infrared
关键词 半导体 量子数 束缚态 能量本征值 薛定谔方程 MATLAB semiconductor quantum number bound state energy eigenvalue Schrodinger equation MATLAB
  • 相关文献

参考文献5

二级参考文献47

  • 1Steven A Mcdonald, Gerasimos Konstantatos, Shiguo Zhang, et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics [J]. Nature Materials, 2005, 4(2): 138-142.
  • 2S Y Wang, S C Chen, S D Lin, et al. InAs/GaAs quantum dot infrared photodetectors with different growth temperatures [J]. Infrared Physics & Technology, 2003, 44(5/6): 527-532.
  • 3M Mehta, D Reuter, A Melnikov, et al. Focused ion beam implantation induced site-selective growth of InAs quantum dots [J]. Applied Physics Letters, 2007, 91(12): 3108.
  • 4K Watanabe, N Koguchi, K Ishige, et al. High- Quality GaAs Quantum Dots Grown Using a Modied Droplet Epitaxy Technique [J]. Journal of the Korean Physical Society, 2001, 38(1): 25-28.
  • 5Ch Heyn, A Stemmann, A Schramm, et al. Faceting during GaAs quantum dot serf-assembly by droplet epitaxy [J]. Applied Physics Letters, 2007, 90(20): 3105.
  • 6W Q Ma, Y W Sun, X J Yang, et al. Enhanced infrared absorption of spatially ordered quantum dot arrays [J]. Infrared Physics & Technology, 2007, 50(2/3): 162-165.
  • 7E Pan, M Sun, P W Chung, et al. Three-dimensional kinetic Monte Carlo simulation of prepatterned quantum-dot island growth [J]. Applied Physics Letters, 2007, 91(19): 3110.
  • 8D S L Mui, D Leonard, L A Coldren, et al. Surface migration induced self-aligned InAs islands grown by molecular beam epitaxy [J]. Appl. Phys. Lett., 1995, 66: 1620.
  • 9R Leon, S Chaparro, S R Johnson, et al. Dislocationinduced spatial ordering of InAs quantum dots: Effects on optical properties [J]. Journal of Applied Physics, 2002, 91:5826.
  • 10J M Ulloa, P M Koenraad, E Gapihan, et al. Double capping of molecular beam epitaxy grown InAs/InP quantum dots studied by cross-sectional scanning tunneling microscopy [J]. Applied Physics Letters, 2007, 91(7): 3106.

共引文献6

同被引文献30

  • 1:Donald A Neamen著,赵毅强,姚素英,解晓东,等译.半导体物理与器件(第三版)[M].北京:电子工业出版社,2005年1月.
  • 2Mohamed Henini,Manijeh Razeghi.Handbook of Infraxed Detection Technologies[M].Elseview Sci-ence Ltd.,2002.
  • 3野村昭一郎著,李彬,黄东律,等译.量子力学入门[M].北京,高等教育出版社,1985.
  • 4D S萨克林著,苏耀中,叶安祚译.初等量子力学[M].北京:高等教育出版社,1985.
  • 5DonaldAN著.赵毅强,姚素英,解晓东,等译.半导体物理与器件(第三版)[M],北京:电子工业出版社,2005.
  • 6赵凯华.量子物理[M].北京:高等教育出版社,2001.1.
  • 7《数学手册》编写组.数学手册[M].北京:高等教育出版社,2004:88-89.
  • 8马声伞,陈贻汉.光电子理论与技术[M].北京:科学出版社,2005.
  • 9LiouKN著郭彩丽,岗诗健,译J司秀骥,张文建,校大气辐射导论(第2版)[M].北京:气象出版社,2004.
  • 10MarcuseD著郭彩丽,程希望译刘弘度校传输光学[M].北京:人民邮电出版社,1987.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部