期刊文献+

凹槽状动叶顶部非定常气膜冷却性能的研究 被引量:10

Investigations of Unsteady Film Cooling Performance on Rotor Squealer Tip
下载PDF
导出
摘要 采用数值求解三维(RANS)方程的方法,开展了燃气透平级在动静叶干涉下凹槽状动叶顶部定常和非定常气膜冷却性能的研究.定常计算结果表明:吹风比为1.0时的动叶顶部气膜冷却有效度优于吹风比为0.5和1.5的情况.在吹风比为1.5时,气膜冷却气流脱离槽底壁面并导致气膜冷却有效度降低.非定常计算结果表明:在动静干涉下凹槽状动叶顶部内流动和气膜冷却有效度具有高度的非定常特征;上游静叶尾迹和通道涡周期性地与动叶顶部间隙泄漏流相互作用,使得动叶顶部凹槽底部分离线发生变化,冷却气流覆盖槽底壁面的位置和面积也发生相应的改变,进而导致槽底和槽侧面的气膜冷却有效度发生变化;定常计算得到的凹槽底部气膜冷却有效度的预测值大于非定常计算的时均结果. The steady and unsteady film cooling performance together with leakage flow and heat transfer characteristics for a typical gas turbine stage with a squealer tip is numerically investigated using the three-dimensional Reynolds-averaged Navier-Stokes(RANS)solutions.The influence of the film blowing ratio on the film cooling effectiveness in the squealer tip is discussed.The results calculated for the steady film cooling show that the film cooling effectiveness with a blowing ratio of 1.0 is greater than that of 0.5 or 1.5.However,the cooling gas will be separated at the adjacent downstream area of the film holes when the blowing ratio is 1.5.The results for the unsteady film cooling show that the flow and the film cooling effectiveness in the rotor squealer tip has significant unsteady characteristics under the interaction between the rotor/stator blade rows.The separation line at the bottom of the rotor squealer tip changes because the upstream wake and passage vortex interact periodically with the leakage flow in the rotor blade tip.The covering position and area of the film cooling vary accordingly.This unsteady flow behavior results in variation of the film cooling effectiveness at the bottom and sidewall of the rotor squealer tip.The film cooling effectiveness at the bottom of the rotor squealer tip achieved by the steady numerical prediction is greater than that by the unsteady numerical simulation.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第5期5-9,25,共6页 Journal of Xi'an Jiaotong University
基金 国家重点基础研究发展规划资助项目(2007CB210107) 新世纪优秀人才支持计划资助项目(NCET-07-0699)
关键词 燃气透平 非定常流动 凹槽叶顶 气膜冷却 gas turbine unsteady flow squealer tip film cooling
  • 相关文献

参考文献10

  • 1BUNKER R S.Axial turbine blade tips:function,design,and durability[J].Journal of Propulsion and Power,2006,22(2):271-285.
  • 2BOGARD D G,THOLE K A.Gas turbine film cooling[J].Journal of Propulsion and Power,2006,22(2):249-270.
  • 3FUNAZAKI K,YOKOTA M,YAMAWAKI S.Effect of periodic passing wakes on the leading edge film cooling effectiveness[J].JSME,1995,61(7):342-349.
  • 4KWAK J S,HAN J C.Heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade[J].ASME Journal of Turbomachinery,2003,125(4):648-657.
  • 5YANG Dianliang,FENG Zhenping,YU Xiaobing.Investigation of film cooling effectiveness on squealer tip of a gas turbine blade(C/CD]//Proceedings of ASME Turbo Expo 2009.New York,USA:ASME,2009:GT2009-60280.
  • 6GAO Zhihong,NARZARY D,HAN H C.Turbine blade platform film cooling with typical stator-rotor purge flow and discrete-hole film cooling[J].ASME Journal of Turbomachinery,2009,131(4):041004.
  • 7WRIGHT LM,BLAKElSA,RHEED,et al.Effect of upstream wake with vortex on turbine blade platform film cooling with simulated stator-rotor purge flow[J].ASME Journal of Turbomachinery,2009,131(2):021017.
  • 8TIMKO L P.Energy efficient engine high pressure turbine component test performance report,NASA CR-168289[R].Moffett Field,California,USA:NASA,1984.
  • 9RAI M M.L Three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction:methodology[J].Journal of Propulsion and Power,1989,5(3):305-311.
  • 10佃亮,燃气轮机动叶顶部传热及冷却的数值研究[D].西安:西安交通大学能源与动力工程学院,2008.

同被引文献62

  • 1蒋雪辉,赵晓路.非定常尾迹对叶栅气膜冷却效率的影响[J].推进技术,2004,25(4):311-315. 被引量:7
  • 2徐红洲,刘松龄,许都纯.单孔复合角气膜冷却的流动与传热的实验研究[J].推进技术,1996,17(6):12-17. 被引量:3
  • 3Bunker, R. S. Axial Turbine Blade Tips: Function, Design and Durability[ J ]. Journal of Propulsion and Power, 2006, 22 (2): 271 - 285.
  • 4Bogand, D. G. , Thole, K. A. Gas Turbine Film Cooling[J]. Journal of Propulsion and Power, 2006, 22(2) : 249-270.
  • 5Metzger D E, Bunker R S,Chyu M K. Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel [ J ]. ASME Journal of Heat Transfer, 1989, 111:73 -79.
  • 6Azad G S, Han J C,Teng S. , et al. Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip [ J ]. ASME Journal of Turbomachinery, 2000, 122(4) :717 -724.
  • 7Yang, D., Yu, X., Feng, Z. Investigation of Leakage Flow and Heat Transfer in a Gas Turbine Blade With Emphasis on the Effect of Rotation [ J ]. ASME Journal of Turbomachinery, 2010, 132: 041010 - 1 - 9.
  • 8Zhou, C. , Hodson, H. , Tibbott, I. , et al. Effects of Endwall Motion on the Aero-Thermal Performance of a Winglet Tip in a HP Turbine[ J]. ASME Journal of Turbomachinery, 2012, 134: 061036 - 1 - 12.
  • 9Zhoa, C. , Hodson, H. The Tip Leakage Flow of an Unshrouded High Pressure Turbine Blade With Tip Cooling[ J]. ASME Journal of Turbomachinery, 2011, 133 : 041028 - 1 - 12.
  • 10Kwak, J. S. , Han, J. C. Heat Transfer Coefficient on a Gas Turbine Blade Tip and Near Tip Regions. AIAA Paper, AIAA - 2002 3012, 2002.

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部