期刊文献+

含双时滞主动控制系统平凡平衡解稳定性的数值分析 被引量:3

Numerical Analysis for Stability of Trivial Equilibrium Solution of Active Control Systems with Double Time Delays
下载PDF
导出
摘要 采用精细积分方法求解含双时滞受控系统的平凡平衡解,根据不同时滞量下系统响应的敛散性判断系统的稳定性,得到了时滞受控系统随时滞变化的稳定区域分布,避免了求解时滞系统特征方程的困难.在此基础上,分析了不同时滞量和反馈增益对系统稳定区域的影响规律,结果表明:随时滞量的变化,系统的稳定区域与不稳定区域是交替分布的,当2个反馈增益相差较大时,与较大的反馈增益相关的时滞量对系统的稳定性影响更为显著. The characteristic equation of control systems with time-delay is a transcendental equation containing exponential function,which has infinite roots difficult to be all solved.Aiming at solving dynamic equation of control system with double time delays,a precise integration method is chosen to obtain the distribution of stable regions of system with variational time delays and avoid the difficulty for solving the characteristic equation as taking different feedback control gains.The influence of different time delays and feedback control gains on distribution of stabile regions of system is discussed.It shows the cross distribution of stable and unstable areas,and the time delay related with the feedback gains with higher absolute value,exert a significant effect on stability of system,especially for the case of two quite different feedback gains.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第5期102-105,124,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(10772141)
关键词 精细积分 时滞 稳定性 主动控制 定常系统 precise integration method time delay stability active control time-invariant system
  • 相关文献

参考文献13

  • 1徐鉴,裴利军.时滞系统动力学近期研究进展与展望[J].力学进展,2006,36(1):17-30. 被引量:66
  • 2胡海岩,王在华.非线性时滞动力系统的研究进展[J].力学进展,1999,29(4):501-512. 被引量:65
  • 3胡海岩.振动主动控制中的时滞动力学问题[J].振动工程学报,1997,10(3):273-279. 被引量:40
  • 4HE Yong,WU Min,SHE Jinhua,et al.Parameterdependent Lyapunov functional for stability of timedelay systems with polytopic-type uncertainties[J].IEEE Transactions on Automatic Control,2004,49(5):828-832.
  • 5HARITONOV V L,ZHABKO A P.LyapunovKrasovskii approach to the robust stability analysis of time-delay systems[J].Automatic,2003,39(1):15-20.
  • 6WU Huaining.Delay-dependent stability analysis and stabilization for discrete-time fuzzy systems with state delay:a fuzzy Lyapunov-Krasovskii functional approach[J].IEEE Transactions on System,Man and Cybernetics:B,Cybernetics,2006,36(4):954-962.
  • 7SU Juing-Huei,FONG I Kong,.TSENG Chwam-Lu.Stability analysis of linear systems with time delay[J].IEEE Transactions on Automatic Control,1994,39(6):1341-1344.
  • 8CHEN Jie.On computing the maximal delay intervals for stability of linear delay systems[J].IEEE Transactions on Autonmtic Control,1995,40(6):1087-1093.
  • 9WANG Zaihua,HU Haiyan.Stabilization of vibration systems via delayed state difference feedback[J].Journal of Sound and Vibration,2006,296(1/2):117-129.
  • 10WEI Junjie,RUAN Shigui.Stability and bifurcation in a neural network model with two delays[J].Physica:D,1999,130:255-272.

二级参考文献62

共引文献642

同被引文献55

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部