期刊文献+

Hilbert空间中非扩张映像族公共不动点的存在性 被引量:8

The existence of common fixed points for a family of nonexpansive mappings in Hilbert spaces
原文传递
导出
摘要 在Hilbert空间中,首先利用距离投影算子技巧证明了由Aoyama,Kohsaka和Takahashi构造的关于非扩张映像族的收缩投影方法所生成的序列是有意义的;其次获得了非扩张映像族有公共不动点的几个充分必要条件. It is proved that the sequence generated by Aoyama,Kohsaka and Takahashi's shrinking projection method for a family of nonexpansive mappings is well defined by using metric projection operator technique,and then many necessary and sufficient conditions are obtained for the family of nonexpansive mappings having a common fixed point in a Hilbert space.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期249-253,257,共6页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10771050)
关键词 非扩张映像族 公共不动点 存在性 收缩投影方法 family of nonexpansive mappings common fixed points existence shrinking projection method
  • 相关文献

参考文献10

  • 1NAKAJO K,TAKAHASHI W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups[ J]. J Math Anal Appl,2003 ,279 :372-379.
  • 2MATSUSHITA S, TAKAHASHI W. The sequences by the hybrid method and the existence of fixed points of nonexpansive mappings in a Hilbert space[ C ]. Proceedings of the 8th International Conference on Fixed Point Theory and its Applications, 2007 : 109-113.
  • 3AOYAMA K, KOHSAKA F, TAKAHASHI W. Shrinking projection methods for firmly nonexpansive mappings [ J]. Nonlinear Anal,2009,71:1 626-1 632.
  • 4MARINO G,XU H K. Weak and strong convergence theorems for strict pseudo - contractions in Hilbert spaces [ J ]. J Math Anal Appl,2007,329:336-346.
  • 5TAKAHASHI W. Viscosity approximation methods for countable families of nonexpansive mappings in Banach spaces [ J ]. Nonlinear Anal ,2009,70:719-734.
  • 6高兴慧,崔艳兰,马乐荣.Banach空间中广义隐拟变分包含解的迭代逼近[J].云南大学学报(自然科学版),2004,26(2):98-102. 被引量:1
  • 7高兴慧,马乐荣,周海云.Banach空间中拟φ-渐近非扩展映像不动点的迭代算法[J].数学的实践与认识,2009,39(9):220-224. 被引量:16
  • 8ZHOU Hai-yun, GAO Xing-hui. A strong convergence theorem for a family of quasi φ - nonexpansive mappings in a Banach space [ J ]. Fixed Point Theory and Applications ,2009,2009,12 pages, doi : 10.1155/2009/351265.
  • 9ZHOU Hai-yun. Demiclosedness principle with applications for asymptotically pseudo -contractions in Hilbert spaces[J]. Nonlinear Analysis ,2009,70 ( 9 ) :3 140-3 145.
  • 10TAKAHASHI W, Nonlinear Functional Analysis [ M ]. Yokohama : Yokohama Publishers, 2000.

二级参考文献14

  • 1Goebel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive[J]. Proc Amer Math Soc, 1972, 35(1):171-174.
  • 2Xu H K. Existence and convergence for fixed point of mapping of asymptotically nonexpansive type[J]. Nonlinear Anal TMA,1991,224:91-101.
  • 3Zhang S S, Cho Y J, Zhou H Y. Iteration Methods for Nonlinear Operator Equations in Banach Spaces[M]. New York :Nova Science Publishers, 2002.
  • 4Takahashi W. Nonlinear Functional Analysis[M]. Yokohama Publishers, Yokohama,2000.
  • 5Kamimura S, Takahashi W. Strong convergence of a solutions to accretive operator inclusions and applications[J]. Set-Val-ue Anal, 2000,8 : 361-374.
  • 6CHANG S S. Set-valued variational inclusions in Banach spaces[J] .J Math Anal Appl, 2000, 248:438-454.
  • 7CHANG S S, CHO Y J, LEE B S, et al. Generalized setvalued variational inclusions in Banach spaces [ J ]. J Math Anal Appl, 2000, 246: 409--422.
  • 8NOOR M A. Generalized set-valued variational inclusions and resolvent equations [ J ]. J Math Anal Appl,1998, 228: 206-220.
  • 9HUANG N J. Generalized nonlinear variational inclusions with noncompact valued mappings[J]. Appl Math Lett, 1996, 9(3) :25-29.
  • 10CHANG Shi-sen. Some problems and results in the study of nonlinear analysis[J ]. Nonlinear Anal, 1997,30:4 197-4 208.

共引文献15

同被引文献60

  • 1Zhou H Y.Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert spaces[J].Nonlinear Anal.,2008(69):456-462.
  • 2Marino G and Xu H K.Weak and strong convergence theorems for k-strict pseudo-contractions in Hilbert spaces[J].J.Math.Anal.Appl.,2007(329):336-349.
  • 3Liu L S.Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces[J].J.Math.Anal.Appl.,1995(194):114-125.
  • 4Takahashi W.Nonlinear functional analysis[M].Yokohama:Yokohama Publishers,2000.
  • 5BIACINO L, GERLA G. Closure systems and L - subalgebras [ J ]. Inf Sci, 1984,33 : 181 -195.
  • 6BIACINO L, GERLA G. An extension principle for closure operators [ J ]. J Math Anal Appl, 1996,198:1-24.
  • 7GERLA G. Graded consequence relations and fuzzy closure operators[ J]. J Appl Non- Classical Logics, 1996,6:369-379.
  • 8FANG Jin-ming, LI Yue-yue. L- fuzzy closure systems[ J]. Fuzzy Sets and Systems,2010,161:1 242-1 252.
  • 9SHI Fu-gui. L- fuzzy interiors and L- fuzzy closures[J]. Fuzzy Sets and Systems,2009,160:1 218-1 232.
  • 10LIU Ying-ming, LUO Mao-kang. Fuzzy topology[ M ]. Singapore:World Scientific Publishing, 1997.

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部