期刊文献+

竞争与动态合作学习聚类分析算法 被引量:2

Competitive and dynamic cooperative learning algorithm
下载PDF
导出
摘要 从竞争与合作学习(CCL)算法的半合作机制出发,提出了基于自适应调节合作群体内种子学习率机制的竞争与动态合作学习(CDCL)聚类分析算法.该算法在保证所有种子以较高精度收敛性于各聚类中心的同时,可有效克服同类算法普遍存在的对种子初始分布敏感、收敛速度不稳定及无法适用于异构聚类分析等问题.混合高斯聚类分析与彩色图像分割实验结果验证了CDCL的有效性,且在复杂条件下其聚类分析性能远超出CCL及其他RPCL衍生算法. Although rival penalized competitive learning(RPCL) and its variants can select cluster numbers automatically,they have some important limitations.Based on the semi-competitive learning mechanism of competitive and cooperative learning(CCL),this paper presents a new robust dynamic cooperative learning algorithm,or competitive and dynamic cooperative learning(CDCL),in which the learning rate of each seed point within a cooperative team can be adaptively adjusted.CDCL not only inherits the merits of CCL,RPCL and its variants,but also overcomes most of their shortcomings.It is insensitive to the initialization of seed points and applicable to heterogeneous clusters with an attractive and accurate convergence property.Experiments on Gaussian mixture clustering and color image segmentation have shown the efficacy of CDCL.Moreover,in complex cases its performance was far superior to CCL and some other variants of RPCL.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2010年第1期102-108,共7页 Journal of Harbin Engineering University
基金 国家自然科学基金(60672095) 国家863计划基金(2007AA11Z210) 教育部博士点基金(20070286004)
关键词 聚类分析 次胜者受罚竞争学习 竞争与合作学习 竞争与动态合作学习 clustering analysis rival peralized competitive learning(RPCL) competitive and cooperative learning(CCL) competitive and dynamic cooperative learning(CDCL)
  • 相关文献

参考文献15

  • 1FORGY E W.Cluster analysis of multivariate data:efficiency versus interpretability of classifications[J].Biometrics,1965,21(3):768-769.
  • 2JING L P,NG M K,HUANG J Z.An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data[J].IEEE Trans Knowl Data Eng,2007,19(8):1026-1041.
  • 3ZHANG Z Y,CHEUNG Y M.On weight design of maximum weighted likelihood and an extended EM algorithm[J].IEEE Trans Knowl Data Eng,2006,18(10):1429-1434.
  • 4CHEUNG Y M.Maximum weighted likelihood via rival penalized EM for density mixture clustering with automatic model selection[J].IEEE Trans Knowl Data Eng,2005,17(6):750-761.
  • 5Mac QUEEN J B.Some methods for classification and analysis of multivariate observations[C]//Proc Fifth Berkeley Symp Math Statistics and Probability.Berkeley,USA,1967.
  • 6RUMELHART D E,ZIPSER D.Feature discovery by competitive learning[J].Cognitive Science,1985,9(1):75-112.
  • 7GROSSBERG S.Competitive learning:from iterative activation to adaptive resonance[J].Cognitive Science,1987,11(1):23-63.
  • 8CHENG Yiuming.On rival penalization controlled competitive learning for clustering with automatic cluster number selection[J].IEEE Trans Knowl Data Eng,2005,17 (11):1583-1588.
  • 9AHALT S C,KRISHNAMURTY A K,CHEN P,et al.Competitive learning algorithms for vector quantization[J].Neural Networks,1990,3(3):277-290.
  • 10XU L,KRZYZAK A,OJA E.Rival penalized competitive learning for clustering analysis,RBF net,and curve detection[J].IEEE Trans Neural Networks,1993,4(4):636-648.

同被引文献17

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部