期刊文献+

基于分离变量法的瞬态高温外推测试研究 被引量:3

An Extrapolation Measuring Method for Transient High-Temperature Based on Separation of Variables
下载PDF
导出
摘要 提出了一种利用蓝宝石光纤黑体腔温度传感器外推测量高温的新方法,建立了测量瞬态高温的黑体腔外推模型,利用分离变量法对其求解.在此基础上,利用CO2激光器模拟瞬态高温热源,用传感器和高速红外测温仪同时测量黑体腔内外膜层温度变化情况.实验结果表明:利用分离变量法求得的外温度和红外测温仪测得的温度在变化趋势及峰值方面表现出了比较好的一致性,从而证明了外推模型的正确性.同时,利用Ansys软件对黑体腔的瞬态受热传热过程进行仿真,从反面验证了外推模型的正确性. Based on sapphire optical fiber blackbody cavity temperature sensor, an extrapolation measuring method for transient high-temperature was presented. The mathematical model was established and solved by separation of variables. On this basis, by CO2 laser simulating the transient high-temperature heat source, the sensors and high-speed infrared thermometer were simultaneously used to measure the temperature change inside and outside the black body cavity film. The experimental results show that the extrapolation temperatures obtained by separation of variables are consistent with the temperatures detected by infrared thermometer in the change trendency and the peak value aspects, which proves the correctness of the extrapolation model. At the same time, Ansys software is used to simulate the transient heat transfer process of the blackbody cavity heated, which proves the correctness of extrapolation model in the opposite direction.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2010年第2期150-155,共6页 Journal of North University of China(Natural Science Edition)
关键词 外推法 黑体腔 分离变量法 蓝宝石光纤温度传感器 extrapolation blackbody cavity separation of variables sapphire optical fiber blackbody cavity temperature sensor
  • 相关文献

参考文献9

  • 1MichalskiL, EckersdorfK, KueharskiJ, etal. TemperaturesMeasurement[M]. 2nded. John Wiley & Sons, 2001:279-332.
  • 2Nicholas J V, White D R. Traceable Temperatures: An Introduction to Temperature Measurement and Calibration [M]. 2nd ed. John Wiley& Sons, 2001: 21-24.
  • 3Waldemar Minkina. Theoretical and experimental identification of the temperature sensor unit step response non- linearity during air temperature measurement[J]. Sensors and Actuators, 1999, 78: 81-87.
  • 4Lahoucine C O, Khellaf A. Periodic method: correction for thermocouple and simultaneous estimation of thermal conductivity and thermal diffusivity[J]. Review of Scientific Instruments, 2004, 75(7): 132-135.
  • 5Hodgson P I), Kong L X, Davies C H J. Prediction of hot strength in steels with an integrated phenomenological and arlificial neural network model[J].J. Mater. Process. Technol. , 1999, 87.. 132 139.
  • 6Hodgson P D, Collinson D C, Davies C H J, et al. The application of phenomenological, empirical and ANN models to the predication of hot strength in steels[C]. IPMM'97, Brisbane, Australia, 1997: 961-967.
  • 7Kong I. X, Hodgson P D, Collison D C. Modelling the effect of carbon content on hot strength of steels using a modified artificial neural network[C]. ISIJ Int. , 1998(38): 1121-1129.
  • 8Kong I. X, Hodgson P D, Collison D C. Extrapolative prediction of the hot strength of austenitie steels with a combined constitutive and ANN model[J]. Journal of Materials Processing Technology, 2000, 102:84-89.
  • 9Mano J F, Cahon J P. A simple method for calibrating the temperature in dynamic mechanical analysers and thermal mechanical analysers[J]. Polymer Testing, 2004, 23: 423-430.

同被引文献16

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部