期刊文献+

FVTreeMiner:无序频繁子树挖掘算法

FVTreeMiner:An Efficient Frequent Unordered Trees Mining Algorithm
下载PDF
导出
摘要 在挖掘无序树频繁模式的过程中,大多数的算法都是先产生候选者,再进行模式匹配判断它是否为频繁子树。产生候选者本身就需要消耗很大的空间来保存,并且要在复杂的树结构里做匹配也是件难事,它会影响整个挖掘过程的效率。为了尽量避免产生不必要的候选者,提高发现频繁模式的效率,基于对相关算法的研究,引进树投影资料库的概念,并在RootedTreeaVfiner算法的基础上,采用其模式延伸方法和广度优先标准型式概念,提出子树频繁度、频繁可延冲点串的概念,从而更有效系统地枚举所有的频繁模式树,并给出无序频繁子树挖掘算法FVTreeMiner。经系列实验结果证实了该算法合理、高效,并可以减少一定的内存开销和运行时间开销。 The most frequent unordered treec, mining algorithm, always enumerate some frequent pattern cheoser,and then to check the chooser is frequent or not. This process wastes a lot of memory, and is difficult to do matching, for increasing the frequent pattern mining' s efficiency. Under relational research, import Tree Projected Database, and based frequent unordered trees mining algorithm RootedTreeMinier, use its canonical forms and the other concept, for more efficient mining, project the new algorithm: FVTreeMiner. FVTreeMiner advice Subtree Frequent Set and Extended Nodes List, avoid enumerating useless pattern chooser. For long time' s research, a great of experiments result shows that the new algorithm use less memory and time than RootedTreeMiner.
出处 《计算机技术与发展》 2010年第5期9-12,共4页 Computer Technology and Development
基金 基金项目:国家自然科学基金(50604012)
关键词 无序树 标准型式 频繁子树 unordered tree canonical forms frequent subtree
  • 相关文献

参考文献10

  • 1Chi Y,Yang Y,Muntz R R.HybridTreeMiner:An Efficient Algorithm for Mining Frequent Rooted Trees and Free Trees Using Canonical Forms[C]//In proceedings of the 16th International Conference on Sdentific and Statistical Database Management(SSDBM'04).Washington:IEEE Computer Society,2004.
  • 2Chi Y,Yang Y,Muntz R R.Canonical Forms for Labeled Trees and Their Applications in Frequent Subtree Mining[J].Journal of Knowledge and Infonmfion Systems(KAIS),2005,8(2):203-234.
  • 3Huang K Y,Chang C H,Lin K Z.PROWL:An effident frequent continuity mining algorithm on event sequences[C]//In proceedings of 6th International Conference on Data Warehousing and Knowledge Discovery(DaWak).Washington:[s.n.],2004.
  • 4Agrawal R,Srikaat R.Fast algorithms for mining association rules[C]//In proceedings of 1994 International Conference.Very Large Data Bases(VLDB'94).New York:[s.n.],1994:487-499.
  • 5潘锦.Chopper:一个高效的有序标号树频繁结构的挖掘算法[C]//第20届全国数据库年会(NDBC).长沙,2003:303-308.
  • 6杨沛,郑启伦,彭宏,李颖基.PFTM:一种基于投影的频繁子树挖掘算法[J].计算机科学,2005,32(2):206-209. 被引量:5
  • 7王新宇,杜孝平,谢昆青.FP-growth算法的实现方法研究[J].计算机工程与应用,2004,40(9):174-176. 被引量:27
  • 8吉根林,韦素云,鲍培明.一种基于DOM树的XML数据频繁模式挖掘算法[J].南京航空航天大学学报,2006,38(2):206-211. 被引量:4
  • 9Zaki M J.Fast vertical mining using diffsets,TRO1·1[R].New York:Rensselaer Polytechnic Institute,2001.
  • 10朱永泰,王晨,洪铭胜,汪卫,施伯乐.ESPM——频繁子树挖掘算法[J].计算机研究与发展,2004,41(10):1720-1727. 被引量:18

二级参考文献48

  • 1[1]J Han,Micheline Kamber. Data Mining:Concepts and Techniques[M].Morgan Kaufmann Publishers,2001
  • 2[2]R Agrawal,R Srikant. Fast algorithms for mining association rules[C].In: VLDB ′94,1994: 487~499
  • 3[3]R Agrawal ,T Imielinski ,A Swami. Mining association rules between sets of items in large databases[C].In:Proc 1993 ACM-SIGMOD Int Conf Management of Data (SIGMOD′93), Washington, DC, 1993-05:207~216
  • 4[4]J S Park ,M S Chen,P S Yu. An effective hash-based algorithm for mining association rules[C].In:SIGMOD'95,1995:175~186
  • 5[5]J Han,J Pei,Y Yin. Mining frequent patterns without candidate generation[C].In: Proc ACM SIGMOD, 2000:1~12
  • 6[6]C A Shaffer. Data Structures and Algorithm Analysis[M].Prentice Hall,1997
  • 7Cook D, Holder L. Substructure discovery using minimal description length and background knowledge. Journal of Arti_cial Intelligence Research, 1994,1: 231~ 255.
  • 8Yoshida K, Motoda H. CLIP: Concept learning from inference patterns. Artificial Intelligence, 1995,75 (1):63~ 92.
  • 9Asai T,Abe K,Kawasoe S,Arimura H,Satamoto H,Arikawa S.Effecient substructure discovery from large semi-structured data.In:2nd SIAM Int'l. Conf. on Data Mining,April 2002.
  • 10Zaki M J. Efficiently mining frequent trees in a forest. In SIGKDD'2002 Edmonton, Alberta, Canada.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部