期刊文献+

基于多分类-关联规则的数据流分类算法 被引量:5

Data Stream Classification Algorithm Based on Multiple Class-association Rules
下载PDF
导出
摘要 提出一种基于多分类-关联规则的数据流分类算法——SCMAR,通过改进CMAR算法中FP-tree的建立过程,使FP-tree的时间和空间效率得到提高。利用Hoeffding边界使算法能挖掘并维护数据流中所有的频繁规则,用CR-tree存放挖掘出的规则,为每条规则存放统计信息,使分类时能够对各个规则进行评价,选择适当的规则进行分类。理论分析和实验表明,该算法是有效可行的。 This paper proposes an algorithm for classification of data stream based on multiple class-association rules——SCMAR.It changes the construct process of FP-tree to improve its time and space efficiency,computes and maintains all the frequent rules by using Hoeffding bound and dynamically updates them with the incoming data stream.It stores the rules with CR-tree,and stores the statistic information for each rule,so when classing the data,it can select appropriate rule to construct classifier.Theory analysis and experimental results show that SCMAR algorithm is efficient and effective.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第9期38-40,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60874075)
关键词 数据流 关联分类 频繁模式树 Hoeffding边界 data stream associative classification frequent pattern tree Hoeffding bound
  • 相关文献

参考文献7

  • 1Domingos P,Hulten G.Mining High-speed Data Streams[C]//Proc.of 2000 ACM SIGKDD Int'l Conf.on Knowledge Discovery in Databases.Boston,MA,USA:ACM Press,2000:71-80.
  • 2Hulten G,Spencer L,Domingos P.Mining Time-changing Data Streams[C]//Proc.of 2001 ACM SIGKDD Int'l Conf.on Knowledge Discovery in Databases.San Francisco,CA,USA:ACM Press,2001.
  • 3Liu Bing,Hsu Wynne,Ma Yiming.Integrating Classification and Association Rule Mining[C]//Proc.of KDD'98.New York,USA:IEEE Press,1998.
  • 4Li Wenmin,Han Jiawei,Pei Jian.CMAR:Accurate and Efficient Classification Based on Multiple Class-association Rules[C]//Proc.of ICDM'01.San Jose,CA,USA:[s.n.],2001:369-376.
  • 5赵传申,孙志挥.多分类-关联规则分类的一种改进算法[J].应用科学学报,2005,23(6):615-619. 被引量:1
  • 6Blake C L,Merz C J.UCI Repository of Machine Learning Databases[Z].(1998-08-10).http://www.ics.uci.edu/-mlearn/ML Repository.html.
  • 7Coenen F.The LUCS-KDD Discretised/Normalised ARM and CARM Data Library[Z].(2003-10-12).http://www.csc.liv.ac.uk/-frans/KDD/Software/LUCS_KDD_DN/.

二级参考文献5

  • 1Liu B, Hsu W,Ma Y. Integrating classification and association rule mining[A]. In KDD'98[C]. New York, Aug. 1998.
  • 2Li W,Han J,Pei J. CMAR: Accurate and efficient classification based on multiple class-association rules[A]. In ICDM'01[C]. San Jose, CA, 2001. 369-376.
  • 3Agrawal R, Srikant R. Fast algorithms for mining association rules[A]. In VLDB'94[C]. Santiago, Chile, Sept. 1994.487-499.
  • 4Han J, Pei J,Yin Y. Mining frequent patterns without candidate generation[A]. In SIGMOD'00[C]. Dallas, TX, May 2000.1-12.
  • 5Merz C J, Murphy P. UCI repository of machine learning database[EB/OL]. http://www.cs.uci.edu/~mlearn/MLRepository.html,1996.

同被引文献41

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2贺跃,郑建军,朱蕾.一种基于熵的连续属性离散化算法[J].计算机应用,2005,25(3):637-638. 被引量:15
  • 3赵道利,马薇,梁武科,罗兴锜.水电机组振动故障的信息融合诊断与仿真研究[J].中国电机工程学报,2005,25(20):137-142. 被引量:42
  • 4彭文季,罗兴锜,赵道利.基于频谱法与径向基函数网络的水电机组振动故障诊断[J].中国电机工程学报,2006,26(9):155-158. 被引量:31
  • 5Domingos P, Hulten G. Mining High-speed Data Streams[C]//Proc. of the 6th International Conference on Knowledge Discovery and Data Mining. Boston, USA: [s. n.], 2000.
  • 6Wang Yong, Qu Wei. Mining Concept-drifting Data Stream Using Ensemble Classifiers[C]//Proc. of the 9th ACM International Conference on Knowledge Discovery and Data Mining. [S. l.]: ACM Press, 2003.
  • 7Street W N, Kim Y S. A Streaming Ensemble Algorithm for Large- scale Classification[C]//Proc. of the 7th ACM International Conference on Knowledge Discovery and Data Mining. [S. l.]: ACM Press, 2001.
  • 8Wu Jianxin, Zhou Zhihua. Ensembling Neural Networks: Many Could Be Better than All[J]. Artificial Intelligence, 2002, 137(1/2): 239-263.
  • 9THABTAH F. A review of associative classification mining[ J]. The Knowledge Engineering Review,2007,22( 1 ) :37-65.
  • 10VELOSO A, MEIRA W, ZAKI M J. Lazy association classification [ C ]//Proc of the 6th IEEE International Conference on Data Mining. 2006 : 645- 654.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部