期刊文献+

人工免疫系统中的抗体生成与匹配算法 被引量:9

Antibody Generation and Matching Algorithm in Artificial Immune System
下载PDF
导出
摘要 现有的人工免疫系统被应用于文本识别中时,检测器生成算法对不同基因等质化对待,不能最优反应基因在抗体中出现的频率。针对该问题,提出基因显性度的概念,通过在检测器生成算法及匹配算法中引入基因显性度的因子来提高算法效率。实验结果表明,显性度的引入可降低检测器生成算法约30%的时间复杂度。 Existing Artificial Immune System(AIS) for recognition applications in the text,the detector generating algorithm for different genes,such as the quality of treatment,there can not be the optimal response gene frequency in the antibody deficiency.This paper proposes the concept of degree of gene dominant through the detector generation algorithm and the matching algorithm introduces genes dominant degree factors to improve the efficiency of the algorithm.Experimental results show that the introduction of dominant degree of the detector generating algorithm can be reduced by 30% of the time complexity.
作者 徐佳 张卫
出处 《计算机工程》 CAS CSCD 北大核心 2010年第9期181-183,共3页 Computer Engineering
关键词 人工免疫系统 文本识别 匹配算法 检测器生成 显性度 Artificial Immune System(AIS) text recognition matching algorithm detector generation dominant degree
  • 相关文献

参考文献6

二级参考文献75

  • 1罗小平,韦巍.生物免疫遗传算法的几乎处处强收敛性分析及收敛速度估计[J].电子学报,2005,33(10):1803-1807. 被引量:11
  • 2HanJiawei Kamber M 范明等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 3Timmis J, Neal M, Hunt J. Artificial immune system for data analysis. Biosystems, 2000, 55(1-3):143-150
  • 4Timmis J, Neal M. A resource limited artificial immune sys tem for data analysis. Knowledge Based Systems, 2001, 14(3 -4): 121-130
  • 5Timmis J, Knight T. Artificial immunes system: Using the immune system as inspiration for data mining. In: Abbass H A, Sarker R A, Newton C S eds. Data Mining: A HeuristicApproach. Hershey : Idea Publishing Group, 2001. 209- 230
  • 6Ishiguro A, Ichikawa S, Uchikawa Y. A gait acquisition of a 6-legged robot using immune networks. In: Proc IEEE/RSJ/ GI International Conference on Intelligent Robots and Systems, Munich, Germany, 1994, 2:1034- 1041
  • 7Ishiguro A, Shirai Y, Kondo T et al. Immunoid: An architec ture for behavior arbitration based on the immune networks. In: Proc IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan, 1996. 1730-1738
  • 8Ishiguro A, Kuboshiki S, Ichikawa S. Gait coordination of hexapod walking robots using mutual-coupled immune net works. In: Proc IEEE International Conference on Evolution ary Computation, Perth, Australia, 1995. 672-677
  • 9Dasgupta D, Forrest S. Artificial immune systems in industrial applications. In: Proc 2nd International Conference on Intelli gent Processing and Manufacturing of Materials, Honolulu, 1999. 257-267
  • 10Smith D J, Forrest S, Perelson A S. Immunological memory is associative. In: Dasgupta ed. Artificial Immune Systems and their Applications. Berlin: Springer, 1998. 105-112

共引文献229

同被引文献97

  • 1钟延辉,傅彦,陈安龙,关娜.基于抽样的垃圾短信过滤方法[J].计算机应用研究,2009,26(3):933-935. 被引量:15
  • 2蔡自兴,龚涛.免疫算法研究的进展[J].控制与决策,2004,19(8):841-846. 被引量:56
  • 3张向荣,焦李成.基于免疫克隆选择算法的特征选择[J].复旦学报(自然科学版),2004,43(5):926-929. 被引量:23
  • 4丛琳,沙宇恒,焦李成.基于免疫克隆选择算法的图像分割[J].电子与信息学报,2006,28(7):1169-1173. 被引量:21
  • 5牛永洁,陈莉.基于混合神经网络的入侵检测技术[J].微计算机信息,2006(12X):92-94. 被引量:7
  • 6Deb K,Pratap A,Agarwal S,et al.A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 7Zitzler E,Laumans M,Thiele L.SPEA2:Improving the Strength Pareto Evolutionary Algorithm[EB/OL].(2009-01-26).http://www.citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.5073.pdf.
  • 8Carlos A,Coello C,Becerra R L.Evolutionary Multiobjective Optimization Using a Cultural Algorithm[C] //Proc.of 2003 IEEE Swarm Intelligence Symposium.Indianapolis,USA:IEEE Press,2003.
  • 9Jin Yaochu.A Comprehensive Survey of Fitness Approximation in Evolutionary Computation[J].Soft Computing Journal,2005,9(1):3-12.
  • 10Knowles J.PraEGO:A Hybrid Algorithm with On-line Landscape Approximation for Expensive Multiobjective Optimization Problems[J].IEEE Transactions on Evolutionary Computation,2006,10(1):50-66.

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部