期刊文献+

周期运动靶区受照剂量分布的模拟计算及验证 被引量:2

Simulation and verification of dose distribution of cycle motion target
原文传递
导出
摘要 目的基于剂量矩阵叠加算法计算周期运动靶区的剂量分布,并验证其准确性。方法用二维空气电离室矩阵MatriXX系统和周期运动平台相配合,实测靶区在静态和周期运动状态下进行调强放疗时的剂量分布。根据周期运动靶区在照射过程中的运动特点,提出了预测其剂量分布的剂量矩阵叠加算法,并用Matlab 7.0工具软件编写了相应的模拟计算程序,预测了不同运动幅度(±5、±10、±15mm)时靶区的剂量分布。结果周期运动靶区的模拟剂量分布与静态靶区的实测剂量分布相比,在靶区中心大部分区域二者相对偏差小于1%,在靶区运动方向,模拟的高剂量区域向内收缩,低剂量区域向外扩张,但50%等剂量曲线范围未见明显改变。周期运动靶区的模拟剂量分布与动态下的实测分布相比,二者的离轴比几乎重合,仅在射野外的低剂量区域中(〈10%)有细微偏差。结论剂量矩阵叠加算法能较准确计算周期运动靶区的受照剂量分布。 Objective To simulate the dose distribution of the cycle motion target based on the dose matrix superposing method, and to verify the dose distribution. Methods A 2D air vented ionization chamber array MatriXX system and a cycle motion platform were used to measure 2D dose distribution of static and cycle motion target irradiated by IMRT segment beams. According to the features of the cycle motion target, a dose matrix superposing method was put forward, and the corresponding simulation program was developed by applying Matlab 7.0 software tools. The dose distributions of cycle motion target with different amplitudes ( _+5, + 10, _+ 15mm) were calculated through the simulation program. Results The deviation between the measured dose of static target and the calculated dose of cycle motion target was less than 1% at the central area. Compared with the measured dose distribution of static target, the calculated high dose area of the motion target was shrunk inward and the low dose area was extended outward, but the area of 50% isodose changed insignificantly. The calculated and measured off-axis ratios (OAR) of the cycle motion target were almost identical at motion direction. There was only imperceptible deviation in the low dose area (less than 10% ) out of field. Conclusions The dose matrix superposing method can be applied to precisely calculate the dose distribution of cycle motion target.
出处 《中华放射医学与防护杂志》 CAS CSCD 北大核心 2010年第2期195-198,共4页 Chinese Journal of Radiological Medicine and Protection
基金 广东省科技计划项目(2007B031509009) 广州市属高校科技计划项目(08A008)
关键词 呼吸运动 MatriXX 肺部肿瘤 放射疗法 动态靶区剂量计算 Respiration MatriXX Lung tumour Radiotherapy Dose calculation of motion target
  • 相关文献

参考文献9

  • 1Gierga DP,Chen GT,Kung JH,et al.Quantification of respiration-induced abdominal tumor motion and its impact on IMRT dose distributions.Int J Radiat Oncol Biol Phys,2004,58(5):1584-1595.
  • 2张书旭,周凌宏,陈光杰,刘忠翔.基于MatriXX系统研究呼吸运动对靶区受照剂量分布影响[J].中华放射肿瘤学杂志,2009,18(2):138-141. 被引量:8
  • 3张书旭,周凌宏,陈光杰,林生趣,沈国辉,王余峰.二维空气电离室矩阵MatriXX系统的应用研究[J].中华放射医学与防护杂志,2009,29(1):93-96. 被引量:17
  • 4Jiang SB,Pope C,AI Jarrah KM,et al.An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments.Phys Med Biol,2003,48(12):1773-1784.
  • 5Duan J,Shen S,Fiveash JB,et al.Dosimetric and radiobiological impact of dose fraetionation on respiratory motion induced IMRT delivery errors:a volumetric dose measurement study.Med Phys,2006,33(5):1380-1387.
  • 6李宝生,李大坤,王玉宝,尹勇,韩廷芒,刘同海,卢洁,刘娟.呼吸运动对调强放疗影响的实验研究[J].肿瘤防治杂志,2004,11(12):1295-1298. 被引量:7
  • 7Herzen J,Todorovic M,Cremers F,et al.Dosimetrie evaluation of a 2D pixel ionization chamber for implementation in clinical routine.Phys Med Biol,2007,52(4):1197-1208.
  • 8鞠永健,王高仁,缪旭东,张良安,张金波,汤娅红,徐澄.放疗中呼吸引起的组织深度波动对吸收剂量的影响[J].中华放射医学与防护杂志,2007,27(1):78-80. 被引量:9
  • 9Rosu M,Chetty U,Tatro DS,et al.The impact of breathing motion versus heterogeneity effects in lung cancer treatment planning.Med Phys,2007,34(4):1462-1473.

二级参考文献22

  • 1于甬华,吴玉芬,郭守芳,王仁本,李文武,李宝生.呼吸运动对周围型肺癌位置的影响及其数学模型的建立[J].中华放射肿瘤学杂志,2004,13(2):83-84. 被引量:20
  • 2李宝生,李大坤,王玉宝,尹勇,韩廷芒,刘同海,卢洁,刘娟.呼吸运动对调强放疗影响的实验研究[J].肿瘤防治杂志,2004,11(12):1295-1298. 被引量:7
  • 3张书旭,徐海荣,陈光杰,杨克柽,林生趣,余辉.呼吸运动对靶区三维重建的影响[J].中国医学物理学杂志,2006,23(6):400-404. 被引量:14
  • 4鞠永健,王高仁,缪旭东,张良安,张金波,汤娅红,徐澄.放疗中呼吸引起的组织深度波动对吸收剂量的影响[J].中华放射医学与防护杂志,2007,27(1):78-80. 被引量:9
  • 5Amerio S, Boriano A, Bourhaleb F, et al. Dosimetric 'characterization of a large area pixel-segmented ionization chamber. Med Phys, 2004, 31(2): 414-420.
  • 6Herzen J, Todorovic M, Cremers F, et al. Dosimetfic evaluation of a 2D pixel ionization chamber for implementation in clinical routine. Phys Med Bid, 2007, 52(4): 1197-1208.
  • 7Gossman MS, Robertson MA, Lawson RC. Correlation between detector array measurements and a computer algorithm for enhanced dynamic wedge profiles. Med Dosim, 2007, 32(3): 211-215.
  • 8Buonamici FB, Compagnucci A, Marrazzo L, et al. An intercomparison between film dosimetry and diode matrix for IMRT quality assurance. Med Phys, 2007, 34(4) : 1372-1379.
  • 9Andenna C, Benassi M, Caccia B, et al. Comparison of dose distributions in IMRT planning using the gamma function. J Exp Clin Cancer Res, 2006, 25(2): 229-234.
  • 10Yu C X, Jaffray D A, Wong J W. The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation [J]. PhysMedBiol, 1998,43(1):91-104.

共引文献33

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部