期刊文献+

Fe_(86)Zr_7B_6Cu_1非晶条带在热等静压中的纳米晶化及其软磁性能 被引量:5

Nanocrystallization and soft magnetic properties of amorphous Fe_(86)Zr_7B_6Cu_1 ribbons annealed by hot isothermal pressing
下载PDF
导出
摘要 为了细化纳米晶软磁材料中纳米颗粒的晶粒尺寸和提高其体积分数,对热等静压(HIP)晶化处理非晶Fe86Zr7B6Cu1条带进行研究。利用DSC对非晶合金进行热分析,利用X线衍射(XRD)对纳米晶条带进行相结构、晶粒尺寸和体积分数分析和测算,采用振动样品磁强计(VSM)测定试样的饱和磁感应强度和矫顽力。研究结果表明:当压力由常压增大到150MPa时,α-Fe纳米颗粒的晶粒尺寸由13.2nm降至7.3nm;当压力由常压增大到100MPa时,α-Fe纳米颗粒的体积分数由64.8%上升到72.2%,而后当压力进一步增大到150MPa,体积分数则降至70.2%;当压力由常压增大到150MPa时,试样的矫顽力由15.8A/m减小到1.8A/m;经100MPa热等静压处理后,试样的饱和磁感应强度高达1.65T,矫顽力仅为2.4A/m。 In order to decrease the grain size of nanocrystallites and increase its volume fraction in nanocrystalline soft magnetic alloys, hot isothermal pressing (HIP) was used to anneal amorphous Fe86Zr7B6Cu1 ribbons. Thermal analysis was performed by differential scanning calorimetry (DSC). Phase structures, grain sizes and volume fractions were measured by X-ray diffraction (XRD). Saturation magnetization and coercive force were tested with a vibrating sample magnetometer (VSM). The results show that the grain size of α-Fe nanocrystallites decreases from 13.2nm to 7.3nm with increasing pressure from ambient pressure to 150 MPa. The volume fraction of α-Fe nanocrystallites increases from 64.8% to 72.2% when enhancing pressure from ambient pressure to 100 MPa, but the volume fraction of α-Fe nanocrystallites decreases to 70.2% after enhancing pressure to 150 MPa. The coercive force decreases from 15.8 A/m to 1.8 A/m with increasing pressure from ambient pressure to 150 MPa. The sample annealed by HIP under the pressure of 100 MPa exhibits a high saturation magnetization of 1.65 T and a low coercive force of 2.4 A/re.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第2期460-464,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(50801037) 国家军工配套项目(JPPT-115-2-1057)
关键词 纳米晶材料 显微组织 软磁性能 热等静压 nanocrystalline material microstructure soft magnetic property hot isothermal pressing
  • 相关文献

参考文献20

  • 1Mchenry M E,Willard M A,Laughlin D E.Amorphous and nanocrystalline materials for application as soft magnets[J].Prog Mater Sci,1999,44:291-433.
  • 2Hasegawa R.Present status of amorphous soft magnetic alloys[J].J Magn Magn Mater,2000,215/216:240-245.
  • 3Muraca D,Cremaschi V,Moya J,et al.Finemet type alloy without Si:structural and magnetic properties[J].J Magn Magn Mater,2008,320(9):1639-1644.
  • 4Fujii Y,Fujita H,Seki A Y,et al.Magnetic-properties of fine crystalline Fe-P-C-Cu-X alloys[J].J Appl Phys,1991,70:6241-6243.
  • 5Turgut Z,Huang M Q,Gallagher K,et al.Magnetic evidence for structural-phase transformations in Fe-Co alloy nanocrystals produced by a carbon arc[J].J Appl Phys,1997,81:4039-4041.
  • 6彭坤,成奋强,胡爱平,唐元洪.双层复合材料的软磁性能[J].中国有色金属学报,2004,14(7):1129-1132. 被引量:5
  • 7唐建成,吴爱华,张萌,刘文胜.预退火对纳米晶Fe_(86)Zr_7B_6Cu_1合金显微组织和软磁性能的影响[J].中国有色金属学报,2007,17(10):1592-1596. 被引量:7
  • 8Tang J C,Mao X Y,Li S D,et al.Effects of two-step heat treatment on the microstructures and soft magnetic properties of nanocrystalline Fe86Zr7B6Cu1 ribbons[J].J All Comp,2004,375(1/2):233-236.
  • 9Lu K.Nanocrystalline metals crystallized from amorphous solids:nanocrystallization,structure,and properties[J].Mater Sci Eng R,1996,16(4):161-221.
  • 10Zhang X Y,Zhang J W,Wang W K.A novel route for the preparation of nanocomposite magnets[J].Advanced Materials,2000,12(19):1441-1444.

二级参考文献28

  • 1彭坤,成奋强,胡爱平,唐元洪.双层复合材料的软磁性能[J].中国有色金属学报,2004,14(7):1129-1132. 被引量:5
  • 2[1]Suzuki K, Makino A, Inoue A, et al. Soft magnetic properties of nanocrystalline bcc Fe-M-B-Cu (M =transition metal) alloys with high saturation magnetization[J]. J Appl Plhys, 1991, 70:6232 - 6237.
  • 3[2]Makino A, Hatanai T, Inoue A, et al. Nanocrystalline soft magnetic Fe-M-B (M= Zr, Hf, Nb) alloys and application[J]. Mater Sci Eng A, 1997, 226 -228: 594- 602.
  • 4[3]Makino A, Inoue A, Masumoto T. Nanocrystalline soft magnetic Fe-M-B (M=Zr, Hf, Nb), Fe-M-O(M= Zr, Hf, rare earth) alloys and their application [J]. Naonstructural Materials, 1999, 12:825 - 828.
  • 5[4]Hasegawa R. Present status of amorphous soft magnetic alloys[J]. J Magn Magn Mater, 2000, 215 -216: 240-245.
  • 6[5]Skorvanek I, Kim C G, Kovac J, et al. Soft magnetic behaviour and permeability spectra in amorphous and nanocrystalline Fe80. 5 Nb7 B12. 5 alloys[J]. J Magn Magn Mater, 2000, 215-216: 440-442.
  • 7[6]Petzold J. Advantages of soft magnetic nanocrystalline materials for modern electronic applications [J]. J Magn Magn Mater, 2002, 242-245: 84-89.
  • 8[8]Mehnen L, Svec P, Pfutzner H, et al. Displacement sensor based on an amorphous bilayer including a magnetostrictive component[J]. J Magn Magn Mater,2003, 254 - 255 : 627 - 629.
  • 9[9]Kravs L, Haslar V, Zaveta K, et al. An amorphous magnetic bimetallic sensor material[J]. J Appl Phys,1995, 78(10): 6157- 6164.
  • 10[10]Duhaj P, Svec P, Majkova E, et al. Magnetic properties of FeNiB-CoFeCrSiB amorphous bilayer ribbons[J]. Mater SciEng A, 1991, 133:662-665.

共引文献9

同被引文献62

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部