期刊文献+

多智能体系统中子域适应度评估的合作协进化协作 被引量:1

Cooperative co-evolutionary collaboration algorithm based on sub-domain fitness evaluation in multi-agent system
下载PDF
导出
摘要 为了克服合作协进化算法在解决复杂多智能体系统协作问题时存在的适应度函数难以建立和协作行为难以达到全局最优等问题,提出1种子域适应度评估的合作协进化算法来实现异构多智能体系统中智能体的自适应协作。该算法将复杂问题域模型分解成相互影响较小、较易求解的子问题域模型,在子问题域模型之间并行使用合作协进化算法来完成智能体协作行为的进化,有效降低适应度评估的复杂度。在子问题域进行合作协进化时,在适应度函数中引入环境因子影响矩阵,将其他子问题域的影响信息映射到该子问题域中的个体适应度评估中,从而引导种群向全局优化方向进化。ECJ系统中的仿真实验结果验证了其有效性。 In order to overcome the difficulties of establishing the fitness evaluation function and obtaining the global optimal decision when the cooperative co-evolutionary algorithm is applied to solve the collaboration in complex multi-agent system, a cooperative co-evolution algorithm with sub-domain fitness evaluation was introduced to deal with the adaptive collaboration of heterogeneous multi-agent system. In the proposed algorithm, the complex problem domain model was decomposed into some sub-domain models with less interaction. The results show that the evolution of agents' behavior is completed by parallel cooperative co-evolution among the sub-domains, which reduces the complexity of fitness evaluation function effectively. While the cooperative co-evolution is executed in a sub-domain, a matrix of environmental impact is introduced to map other sub-domains' influence information to the fitness evaluation function in this sub-domain, to achieve the global optimization of population evolution. The proposed algorithm is proven to be effective in ECJ simulation platform.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第2期572-577,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(60874042)
关键词 自适应协作 合作协进化 适应度评估 子问题域 adaptive collaboration cooperative co-evolutionary fitness evaluation sub-domain
  • 相关文献

参考文献15

  • 1Li X,Sol L K.Applications of decision and utility theory in Multi-agent systems[R].Lincoln:University of Nebraska-Lincoln,2004.
  • 2范波,潘泉,张洪才.一种基于分布式强化学习的多智能体协调方法[J].计算机仿真,2005,22(6):115-117. 被引量:5
  • 3Huang J,Yang B,Liu D Y.A distributed Q-learning algorithm for multi-agent team coordination[C]//Proceedings of the Fourth International Conference on Machine Learning and Cybernetics.Guangzhou:IEEE Press,2005:108-109.
  • 4Tehrani A M,Kamel M S,Khamis A M.Fuzzy reinforcement learning for embedded soccer agents in a multi-agent context[J].International Journal of Robotics and Automation,2006,21(2):110-119.
  • 5Tan K C,Yang Y J,Goh C K.A distributed cooperative coevolutionary algorithm for multiobjective optimization[J].IEEE Transactions on Evolutionary Computation,2006,10 (5):527-549.
  • 6Lu H,Yen G.Rank-density-based multiobjective genetic algorithm and benchmark test function study[J].IEEE Transactions on Evolutionary Computation,2003,7(4):325-343.
  • 7罗杰,段建民,陈建新.一种引入局部交互的群体协作行为协同进化机制[J].机器人,2007,29(4):313-319. 被引量:4
  • 8Potter M A,De Jong K A.Cooperative co-evolution:An architecture for evolving co-adapted subcomponents[J].Evolutionary Computation,2000,8(1):1-29.
  • 9Yang Z Y,Tang K,Yao X.Large scale evolutionary optimization using cooperative co-evolution[J] Information Sciences,2008,178(15):2985-2999.
  • 10Uchibe E,Nakamura M,Asada M.Cooperative behavior acquisition in a multiple mobile robot environment by co-evolution[C]//Robocup-98:Robot Soccer World Cup II,Lecture Notes In Computer Science.London:Springer-Verlag,1999:273-285.

二级参考文献14

  • 1P L Kaelbling, L M Littman, W A Moore. Reinforcement Learning: A survey[J]. Journal of Artificial Intelligence Research, 1996, 4: 237-285.
  • 2R Bellman.Dynamic Programming: deterministic and stochastic models[M].Prentice-Hall, Englewood Cliffs, NJ, 1957.
  • 3R A Howard. Dynamic Programming and Markov progress[M].Springer-Verlag, 1960.
  • 4C J C H Watkons and P Dayan. Q-leanign[J]. Machine Learning, 1992, 8(3): 279-292.
  • 5Maik V,Müller J,Pechoucek M.Multi-Agent Systems and Applications Ⅲ:3rd International Central and Eastern European Conference on Multi-Agent Systems[M].Berlin,Germany:Springer,2003.
  • 6Maturana F P,Tichy P,Slechta P.Distributed multi-agent architecture for automation systems[J].Expert Systems with Applications,2004,26(1):49-56.
  • 7't Hoen P J,de Jong E D.Evolutionary multi-agent systems[A].Proceedings of the 8th International Conference on Parallel Problem Solving from Nature[C].Berlin,Germany:Springer-Verlag,2004.872-881.
  • 8Potter M.The Design and Analysis of a Computational Model of Cooperative Coevolution[D].Fairfax,VA,USA:George Mason University,1997.
  • 9Potter M,de Jong K.Cooperative coevolution:An architecture for evolving coadapted subcomponents[J].Evolutionary Computation,2000,8(1):1 -29.
  • 10Wiegand R P,Liles W,de Jong K.An empirical analysis of collaboration methods in cooperative coevolutionary algorithms[A].Proceedings of the Genetic and Evolutionary Computation Conference[C].San Francisco,CA,USA:Morgan Kaufmann,2001.1235-1242.

共引文献7

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部