期刊文献+

一种基于启发式演化算法的最优-最差蚂蚁系统 被引量:10

An improved best-worst ant system based on heuristic evolutionary algorithm
下载PDF
导出
摘要 针对传统最优-最差蚂蚁系统(BWAS)存在搜索效率低、收敛速度慢的缺点,提出一种基于启发式演化算法的最优-最差蚂蚁系统(IEABWAS)算法。该算法通过加入启发式演化算子,在算法的每次迭代中将最优蚂蚁与次优蚂蚁执行启发式的演化算子操作,并将这种演化操作产生的较好个体替代系统中最差的个体,以达到快速收敛的目的。同时,为使搜索更加集中于最优解附近,对最优-最差蚂蚁的信息素更新方式进行适应性调整,以提高算法的全局搜索能力。使用该算法求解复杂旅行商问题(TSP),结果表明:与传统的最优-最差蚂蚁系统相比,该算法不但具有更强的全局搜索能力,而且能提高算法的收敛速度,算法性能得到明显改善。 In order to overcome the shortcomings of slow convergent speed and low searching efficiency existing in traditional best-worst ant system, an improved best-worst ant system algorithm (IEABWAS) was presented based on heuristic evolutionary algorithm. The principle of the algorithm is as follows: Firstly, a heuristic crossover operator was imported; In iteration of the algorithm, the heuristic evolving operators were used to crossover between the best ant and the second-best ant for generating superior ant to replace the worst ant. Meanwhile, the searching ability of the algorithm was improved by adjusting the updating method of the pheromone of best-worst ant system. The experiment results show that, compared with the traditional best-worst ant system algorithm, this new algorithm to solve complex traveling salesman problem (TSP) has not only stronger searching ability but also can accelerate convergent speed, and the algorithm performance is improved greatly in the end.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第2期609-614,共6页 Journal of Central South University:Science and Technology
基金 国家重点基础研究发展计划("973"计划)项目(2004CB318103) 国家自然科学基金资助项目(70971043) 江西省自然科学基金资助项目(2008GZS0028)
关键词 蚁群算法 最优-最差蚂蚁系统 启发式演化算子 旅行商问题 ant colony algorithm best-worst ant system heuristic evolving operator traveling salesman problem (TSP)
  • 相关文献

参考文献12

二级参考文献42

共引文献431

同被引文献81

  • 1孟凡超,张海洲,初佃辉.基于蚁群优化算法的云计算资源负载均衡研究[J].华中科技大学学报(自然科学版),2013,41(S2):57-62. 被引量:13
  • 2段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 3黄翰,郝志峰,吴春国,秦勇.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344-1353. 被引量:72
  • 4张建英,刘暾.基于人工势场法的移动机器人最优路径规划[J].航空学报,2007,28(B08):183-188. 被引量:44
  • 5Kuan Yew Wong,Phen Chiak See.A new minimum pheromone threshold strategy (MPTS) for max–min ant system[J]. Applied Soft Computing Journal . 2008 (3)
  • 6Yang Yu,Zhi-Hua Zhou.A new approach to estimating the expected first hitting time of evolutionary algorithms[J]. Artificial Intelligence . 2008 (15)
  • 7Zhilu Wu,Nan Zhao,Guanghui Ren,Taifan Quan.Population declining ant colony optimization algorithm and its applications[J]. Expert Systems With Applications . 2008 (3)
  • 8Dorigo M,Gambardella LM.Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation . 1997
  • 9Stutzle T,Dorigo M.A short convergence proof for a class of ant colony optimization algorithms. IEEE Transactions on Evolutionary Computation . 2002
  • 10Huang H,,Wu C G,Hao Z F.A pheromone-rate-basedanalysis on the convergence time of ACO algorithm. IEEETransactions on Systems,Man,and Cybernetics-Part B . 2009

引证文献10

二级引证文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部