期刊文献+

一种基于社团结构的局域复杂网络模型

Local Complex Network Model Based on Community Structure
下载PDF
导出
摘要 BA模型用增长和优先连接两个机制解释了复杂网络的基本特性幂律分布,局域世界模型通过注意到优先连接是限制性的而进行了进一步的发展,本文认为局域世界模型中局部集团中的节点事实上是有着密切关系的,因而在新节点加入时采用GNM算法进行社团分解产生局部集团,提出基于社团分解的局域复杂网络模型(CLW模型).我们进行的理论分析和实验模拟表明,CLW模型具有小的网络平均最短路径,同时它的平均聚类系数要远大于局域世界模型,更接近于真实的复杂网络. The BA model explain the power-law distribution of the complex network by using the method of the growth and preferential attachment,and the local-world evolving network makes a new progress by finding that the preferential attachment is restrictive. This paper has an idea that the nodes of the local group in the local-world evolving network have intimate relationship in fact so that bring the local group forth decomposing the communities using the GNM algorithm while the new node adding. And it raise the local complex network based on the community structure. The theory analysis and experiment simulation make clear that the CLW model have both the little network average shortest path and that its network average clustering coefficient is bigger than the local-world evolving network model,which is approaching the true complex network.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第5期863-865,共3页 Journal of Chinese Computer Systems
基金 国家自然科学基金资助项目(69873007)资助
关键词 BA模型 LW模型 CLW模型 局部集团 聚类系数 BA model LW model CLW model local group clustering coefficient
  • 相关文献

参考文献15

  • 1Watts D J,Strogatz S H.Collective dynamics of ′small-world′ network[J].Nature,1998,393(6684):440-442.
  • 2Barabasi A L,Albert R.Science emergence of scaling in random networks[J].Science,1999,286(5439):509-512.
  • 3Dorogovtsev S N,Mendes J F F.Structure of growing networks with preferential linking[J].Phys.Rev.Lett.,2000,85 (21):4633-4636.
  • 4Bianconi G,Barabasi A-L.Competition and multiscaling in evolving networks[J].Europhysics Letters,2001,54 (4):436-442.
  • 5Jost J,Joy M P.Evolving networks with distance preferences[J].Physical Review,2002,E66(3):36126-36127.
  • 6Albert R,Jeong H,Barabasi A L.Attack and error tolerance in complex networks.[J]Nature,2000,406(6794):378-382.
  • 7Réka Albert,Albert-László,Barabási.Statistical mechanics of complex networks[J].Reviews of Modern Physics,2002,74 (1):47-94.
  • 8Li X,Chen G.A local world evolving network model[J].Physica A,2003,328 (1-2):274-286.
  • 9Saramki K K J.Statistical mechanics and its applications[J].Physica A,2004,325 (1-2):293.
  • 10Calvert K,Doar M,Zegura E.Modeling internet topology[J].IEEE Communication Magazine,1997,35(6):160-163.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部