期刊文献+

一种基于深度图像的自遮挡检测方法 被引量:11

Self-occlusion Detection Approach Based on Depth Image
下载PDF
导出
摘要 针对视觉目标存在的自遮挡现象,并为更好地界定、规避自遮挡现象提供依据,提出一种完全基于目标深度图像信息、仅需通过分析深度图像平均曲率变化特征并结合使用二次阈值法进行自遮挡检测的方法.为避免平均曲率计算的复杂性,该方法首先采用改进的离散正交多项式局部曲面拟合法计算深度图像的平均曲率;然后,通过分析图像各点的平均曲率并结合曲率阈值提取与其八邻域点存在曲率异号的点组成自遮挡候选点集;最后,依据候选点与以其为中心的窗口内其它点存在深度值不连续的现象,再次使用阈值法,实现对自遮挡的检测.实验结果表明该方法能够有效地检测出自遮挡现象并获得自遮挡边界. Considering the self-occlusion phenomenon of visual object and in order to provide better basis for defining and avoiding this phenomenon,an approach based on depth image for detecting self-occlusion is proposed,which only by analyzing the change feature of mean curvature value in depth image and combining with two thresholds judgment. To avoid the calculation complexity of mean curvature value,the improved discrete orthogonal polynomials local surface fitting method is adopted. Then by analyzing the mean curvature value of each image points and combining with curvature threshold,the self-occlusion candidate point set is extracted,in which each point has different curvature sign with its eight neighborhood points. Finally,according to fact that the depth is discontinuous between the candidate point and other points in the window in which the candidate point is its center,the self-occlusion is detected by using threshold method again. Experimental results showed that the proposed approach can detect the self-occlusion phenomenon and obtain occlusion boundary effectively.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第5期964-968,共5页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术研究发展计划项目(2006AA04Z212)资助 河北省自然科学基金项目(F2007000423)资助 河北省教育厅基金项目(2007491)资助 燕山大学博士基金项目(B170)资助
关键词 深度图像 局部曲面拟合 平均曲率 自遮挡检测 depth image local surface fitting mean curvature self-occlusion detection
  • 相关文献

参考文献11

  • 1Ito K,Sakane S.Robust view-based visual tracking with detection of occlusions[C].IEEE International Conferrence on Robotics and Automation,Seoul,Korea,2001:1207-1213.
  • 2Wu Y,Yu T,Hua G.Tracking appearances with occlusions[C].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Madison,Wisconsin,USA,2003:789-795.
  • 3Tao H,Sawhney H,Kumar R.Object tracking with Bayesian estimation of dynamic layer representations[J].IEEE Transactions on Pattern Analysis And Machine Intelligence,2002,24(l):75-89.
  • 4Gentile C,Camps O.Segmentation for robust tracking in the presence of severe occlusion[J].IEEE Transactions on Image Processing,2004,13(2):166-178.
  • 5周妍,胡波,张建秋.基于粒子滤波器和风险决策跟踪遮挡目标的方法[J].电子学报,2007,35(2):350-353. 被引量:12
  • 6BhasinS,Chaudhuri S.Depth from defocus in presence of partial self-occlusion[C].Proceedings of 8th IEEE International Conference on Computer Vision,Vancouver,Canada,2001:488-493.
  • 7Jean G.Self-occlusion immune video tracking of objects in cluttered environments[C].Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance,2003:79-84.
  • 8Park J,Kim S,Lee K.3D mesh construction from depth images with occlusion[M].Springer-Verlag Berlin Heidelberg,2006:770-778.
  • 9Wang R,Leow W K.Human posture analysis under partial self-occlusion[C].Proceedings of International Conference on Image Analysis and Recognition,Povoa de Varzim,Portugal,2006:874-885.
  • 10Schmaltz C,Rosenhahn B,Brox T,et al.Dealing with self-occlusion in region based motion capture by means of internal regions[C].5th International Conference on Articulated Motion and Deformable Objects,Mallorca,Spain,2008:102-111.

二级参考文献9

  • 1Yizong Cheng. Mean shift, mode seeking, and clustering[ J ].IEEE Trans on PAMI, 1995,17(8) :790- 799.
  • 2Amaud Doucet, et al. On sequential monte carlo sampling methods for bayesian filtering [ J]. Statistics and Computing, 2000,10:197 - 208.
  • 3Morelande M R, et al. Manoeuvring target tracking in clutter using particle filters[ J] .IEEE Trans on Aerospace and Electronic Systems, 2005,41 ( 1 ) : 252 - 270.
  • 4潘吉彦,胡波,麦克尔.费希尔.一种基于复合相关相似度的图像跟踪算法[P].中国专利:200610024303.2,2006—03—02.
  • 5Shaohua Zhou, et al. Visual tracking and recognition using ap-pearance-adaptive models in particle filters[ J ]. IEEE. Trans on Image Processing,2004,13(11). 1491 - 1506.
  • 6M Sanjeev Arulampalam, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [ J ]. IEEE Trans on Signal Processing,2002,50(2): 174- 188.
  • 7Weiming Hu, et al. A survey on visual surveillance of object motion and behaviors[ J]. IEEE Trans on Systems, Man, and Cybemeltics, 2004,34(3) : 334 - 352.
  • 8Michael Acheson Isard. Visual motion analysis by probabilistic propagation of conditional density [ D ]. UK: Department of Engineering Science University of Oxford. 1998.
  • 9Wolfe J M. Guided search 2.0 a revised model of visual search [ J ]. Psychonomic Bulletin& Review. 1994,1 (2) : 202 - 238.

共引文献11

同被引文献84

  • 1赵善龙,刘明勇.图像二值化时阈值自适应选取方法及其Visual C++实现[J].哈尔滨铁道科技,2006(1):8-10. 被引量:5
  • 2潘小林,张丽艳,揭裕文,朱延娟.三维曲面部分匹配的算法研究[J].南京航空航天大学学报,2004,36(5):544-549. 被引量:13
  • 3王卫东,平西建,丁益洪.立体足迹重压面提取与描述[J].微计算机信息,2005,21(09X):103-104. 被引量:4
  • 4孙龙祥 程义民.深度图像分析[M].北京:电子工业出版社,1996..
  • 5JORGE S. Maroues. Automatic Tracking Of Muhiph Ptde- strians With Group For Mation And Occlusions [ J ]. IEEE PAMI,2010(31 ) :210-227.
  • 6HOFFMAN R,JAIN A K. Segmentation and classification of range images[J]. Pattern Analysis and Machine Intel- ligence, IEEE Transactions on, 1987 ( 5 ) : 608-620.
  • 7LEIBE B, SEEMANN E, SCHIELE B. Pedestrian detection in crowded scenes [ C ]//2005 IEEE Computer Society Computer Vision and Pattern Recognition. San Diego, USA : IEEE Press ,2005:878-885.
  • 8王坚,周来水,张丽艳,朱延娟.基于遗传算法的曲面匹配[J].中国图象图形学报,2007,12(4):695-699. 被引量:6
  • 9S J Lee, K R Park, J Kim.A SfM-based 3D face reconstruction method robust to self-occlusion by using a shape conversion matrix [J].Pattern Recognition, 2011, 44(7): 1470-1486.
  • 10C Schmaltz, B Rosenhahn, T Brox, et al..Region-based pose tracking with occlusions using 3D models [J].Machine Vision and Applications, 2012, 23(3): 557-577.

引证文献11

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部