期刊文献+

基于区域特征的步态识别研究 被引量:1

Study of Gait Recognition Based on Region Feature
下载PDF
导出
摘要 步态识别主要是以人走路的姿势来识别其身份。为了能准确快速地识别,本文依据步态的周期性,以一个步态序列中的6帧特殊图像来描述步态的变化,再提取步态髋关节以下部分作为研究对象,确定髋关节以下部分的质心,以质心为原点,建立坐标系。将髋关节以下的部分划分成36个小区域,以周期变化的区域面积作为特征,描述步态的周期变化。这样既可以较全面地描述一个步态的信息,又降低了维数,减小计算量。同时引入最近邻分类器进行分类。实验证明,该算法不仅能得到较好的识别率,并且计算速率快。 Human gait recognition is the process of identifying individuals by their walking manners.In order to identify quidkly and accurately,we determined a gait sequence of the six specific graphics based on the cyclical nature of gait.Thus,the lower part of the hip was extracted as the research object,and centroid of the object was determined.Then, a reference frame was built with the centroid as the origin.The areas of coordinates were divided into 36 small part,the periodic changes in size of the area was extracted as the features to describe the gait cycle.In this way,we can retaint the most useful features and reduce the number of dimensions.In this paper the NN classifier is also used,experiments showed that it not only can get a better recognition rate,and calculation rate is enhanced quickly.
出处 《现代科学仪器》 2010年第2期41-45,共5页 Modern Scientific Instruments
基金 国家自然科学基金资助项目(60972158)
关键词 步态识别 髋关节 区域面积 Gait recognition Hip joint Region area
  • 相关文献

参考文献11

  • 1Lily Lee.Gait Analysis for Classification[R].AI Technical Report 2003-014.Massachusetts Institute of Technology- artificial Intelligence Laboratory,2003.
  • 2D Cunado,J M Nash,etal.Gait Extraction and Description by Evidence-Gathering[C].Proc. of the International Conference on Audio and Video Based Biometric Person Authentication, 1995.43-48.
  • 3Yoo J H,Nixon M S,Harris C J.Extracting Gait Signatures Based on Anatomical Knowledge[C].Proceedings of BMVA Symposium on Advancing Biometric Technologies, 2002.
  • 4刘玉栋,苏开娜,马丽.一种基于模型的步态识别方法[J].计算机工程与应用,2005,41(9):88-92. 被引量:16
  • 5柴艳妹,赵荣椿.一种新的基于区域特征的快速步态识别方法[J].中国图象图形学报,2006,11(9):1260-1265. 被引量:9
  • 6Amit Kale ,A N Rajagopalan,etahIdentification of Humans Using Gait[D].Center for Automation Research University of Maryland at College Park,MD 20740,2002.
  • 7J Little,J Boyd.Recognizing People by their Gait.The Shape of Motion[J].Videre:Journal of Computer Vision Research,The MIT Press, 1998,1(2).
  • 8黎雷生,肖德贵.基于不变矩的步态识别[J].计算机应用,2005,25(8):1795-1796. 被引量:3
  • 9赵子健,吴晓娟,刘允才.基于角度直方图的步态识别算法[J].计算机工程与科学,2006,28(6):73-76. 被引量:6
  • 10J H Yoo,M S Nixon,C J Harris .Extracting Human Gait Signatures by Body Segment Properties.Department of Electronics and Computer Science University of Southampton , U K.

二级参考文献39

  • 1耿超,苏开娜,段娟.人群分裂后的人体运动跟踪[J].计算机工程,2005,31(8):165-167. 被引量:2
  • 2Claudette Cedras,Mubarak Shah. A survey of motion analysis from moving light displays[C].In:Proc 1994 IEEE Conf on Computer Vision and Pattern Rec,IEEE Press, 1994:214~221
  • 3J M Nash,J N Carter,M S Nixon. Extracting moving articulated objects by evidence gathering[C].In:Proc BMVC 98,1998-09:609~618
  • 4M R Dawson.Gait Recogniton Final Report.Meng Computing 4,Department of Computing Imperial College of Science,Technology &Medicine ,London,SW7 2BZ ,2002-06
  • 5M P Murray. Gait as a total pattern of movement[J].American Journal of Physical Medicine, 1967 ;46-1:290~333
  • 6G Johansson. Visual perception of biological motion and a model for its analysis[J].Perception and Psychophysics, 1973; 14(2)
  • 7J H Yoo,M S Nixon,C J Harris. Extracting Human Gait Signatures by Body Segment Properties. Department of Electronics and Computer Science University of Southampton ,UK
  • 8J Litfle,J E Boyd. Reeognizing People by Their Gait:the Shape of Motion[J].Journal of Computer Vision Research, 1998; 1 (2): 2~32
  • 9D Cunado,M S Nixon,J N Carter. Using gait as a biometrie,via phaseweighted magnitude spectra[C].In:Leeture Notes in Computer Science Proc AVBPA'97,1997; 1206:95~102
  • 10L Lee,W E L Grimson. Gait Analysis for Recognition and Classifieafion[C].In :Proceeding of the IEEE Conference on Face and Gesture Recognition, 2002:155~161

共引文献29

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部