期刊文献+

一类含Hardy位势的超线性椭圆方程非平凡解的存在性 被引量:1

The Existence of Nontrivial Solutions of a Class of Superlinear Elliptic Equations with Hardy Potential
下载PDF
导出
摘要 构造了一个新的Hilbert空间,研究一类含Hardy位势的超线性椭圆方程.在新空间中利用Cerami条件及山路引理,讨论了该问题非平凡解的存在性. This paper is concerned with a class of superlinear elliptic equations with Hardy potential through establishing a new Hilbert space.It discusses the existence problem of nontrivial solutions in this new space by using the Mountain pass theorem with Cerami condition.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2010年第2期122-125,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10471047) 广东省自然科学基金资助项目(04020077)
关键词 HARDY位势 CERAMI条件 山路引理 Hardy potential Cerami condition mountain pass theorem
  • 相关文献

参考文献9

  • 1Brezis H,Vazquez J L.Blow-up solutions of some nolinear elliptic problem[J].Revista Mat Univ Complntense Madrid,1997(10):443-469.
  • 2Vazquez J L,Zuazna E.The Hardy inequality and the asymptotic behavior of the Heat equation with an inverse-square potential[J].J Funct Analysis,2000,173:103-153.
  • 3Gazzola F,Grunau H F,Mitidieri E.Hardy inequalities with optimal constants and remainders[J].Trans Amer Math Soc,2004(6):2168-2419.
  • 4Tertikas A,Zographopolous N B.Best constants in the Hardy-Rellich inequalities and related improvements[J].Advances in Mathematics,2007,209:407-459.
  • 5Fan X L,Zhang Q H.Existence of solutions for p(x)-Laplacian Dirichlet problem[J].Nonlinear Anal,2003,52:1843-1852.
  • 6Yukun,Renyi Liu.Existence of nontrivial solutions of an asymptotically linear fourth-order elliptic equation[J].Nonlinear Analysis,2008,68:3325-3331.
  • 7Shen Y T,Yao Y X.Nonlinear degenerate elliptic equation with Hardy potential and critical parameter[J].Nonlinear Anal,2008,69:1462-1477.
  • 8陈志辉,沈尧天.含距离位势的拟线性椭圆方程解的存在性[J].数学学报(中文版),2008,51(3):469-474. 被引量:3
  • 9Costa D G,Magalh(a)es C A.Variational elliptic problems which are nonquadratic at infinity[J].Nonlinear Anal,1994,23(11):1401-412.

二级参考文献8

  • 1Marcus M., Mizel V. J., Pinchover Y., On the best constant for Hardy's inequality in R^N, Trans. Amer. Math. Soc., 1998, 350(8): 3237-3255.
  • 2Matskewich T., Sobolevskii P. E., The best possible constant in generalized Hardy's inequality for convex domain in R^N, Nonlinear Anal., 1997, 28(9): 1601-1610.
  • 3Shen Y. T., Yan S. S., Eigenvalue problems for quasilinear elliptic systems with limiting nonlinearity, Acta Mathematica Sinica, New Series, 1992, 2(8): 135-147.
  • 4Ekeland I., On the variational principle, J. Math. Anal. Appl., 1974.47: 324-353.
  • 5Ghoussoub N., Yuan C., Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 2000, 352(12): 5703-5743.
  • 6Belloni M., Kawohl B., A direct uniqueness proof for equations involving the p-Laplace operator, Manuscripta Math., 2002, 109(2): 229-231.
  • 7Trudinger N., On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., 1967, 20(3): 721-747.
  • 8Rabinowitz P. H., Minimax methods in critical point theory with applications to differential equations, American Mathematical Society, Providence, RI, 1986.

共引文献2

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部