期刊文献+

一类基于SVD的数字水印虚警分析与改进算法 被引量:16

Analysis of High False Alarm in SVD Based Watermarking and Improved Algorithm
下载PDF
导出
摘要 讨论一类基于奇异值分解(SVD)的水印算法的高虚警率问题及其产生原因。分析认为SVD水印算法虚警率高的根本原因是:图像SVD分解的基空间与图像内容相关;奇异值向量与图像之间并不存在一一对应关系,不能刻画图像的几何结构。算法主要缺陷并不是出现在提取算法,而是嵌入算法仅仅植入了水印图像的奇异值向量,没有水印图像在基空间的结构信息。因此,该文提出了一个基于分块SVD和离散余弦变换(DCT)分解的改进算法。该算法通过在版权图像的奇异值向量中嵌入水印图像的DCT系数,克服了经典SVD水印算法的虚警问题,因而稳健性高。实验验证了理论分析和算法的有效性。 The problem of high false alarm for a class of singular value decomposition(SVD) based image watermarking algorithms is investigated and the corresponding essential reasons are discussed.The intrinsic reasons that cause the high false alarm problem are: the basis space of SVD is relative to image content;there is no one-to-one correspondence between singular value vector and image;singular value vectors have no information of the structure of image,thus the most important reason is a result of false conception to insert watermark singular value vectors without using the structure information of watermark.An improved image watermarking algorithm is proposed combining the block-SVD and discrete cosine transform(DCT) decomposition.The DCT coefficients of watermark image are embedded into the singular value vectors of host image,and the improved algorithm can overcome the high false alarm problem which exists in the classical SVD based algorithms and also it has good robustness.Experimental results prove the effectiveness of the theoretical analysis and the improved algorithm.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2010年第2期227-231,共5页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(60802039) 教育部博士点基金(20070288050)
关键词 版权保护 数字水印 奇异值分解 虚警错误 copyright protection digital watermarking singular value decomposition false alarm errors
  • 相关文献

参考文献9

  • 1Liu Ruizhen,Tan Tieniu.A new SVD based image watermarking method[A].Proceedings of 4th Asia Conference of Computer Vision[C].Taipei,Taiwan:IEEE Press,2000:63-67.
  • 2Liu Ruizhen,Tan Tieniu.An SVD-based watermarking scheme for protecting rightful ownership[J].IEEE Transactions on Multimedia,2002,4(1):121-128.
  • 3Sverdlov A,Dexter S,Eskicioglu A M.Robust DCT SVD domain image watermarking for copyright protection:Embedding data in all frequencies[A].13th European Signal Processing Conference[C].Antalya,Turkey:Curran Associates,Inc,2005:1021-1025.
  • 4Ganic E,Eskicioglu A M.Robust embedding of visual watermarks using discrete wavelet transform and singular value decomposition[J].Journal of Electronic Imaging,2005,14(4):04304.
  • 5Zhang Xiao-ping,Li Kan.Comment on 'an SVD based watermarking scheme for protecting rightful ownership'[J].IEEE Transactions on Multimedia,2005,7(2):593-594.
  • 6Roman R.Comment on 'an SVD-based watermarking scheme for protecting rightful ownership'[J].IEEE Transactions on Multimedia,2007,9(2):421-423.
  • 7Xiao Liang,Wei Zhihui,Ye Jianbing.Commants on 'an SVD-based watermarking scheme for protecting rightful ownership' and theoretical analysis[J].Journal of Electronic Imaging,2008,17(4):040501.
  • 8高全学,梁彦,潘泉,陈玉春,张洪才.SVD用于人脸识别存在的问题及解决方法[J].中国图象图形学报,2006,11(12):1784-1791. 被引量:27
  • 9Wang Z,Bovik A C,Sheikh H R,et al.Image quality assessment:From error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.

二级参考文献14

  • 1洪子泉,杨静宇.基于奇异值特征和统计模型的人像识别算法[J].计算机研究与发展,1994,31(3):60-65. 被引量:49
  • 2Hong Z Q.Algebraic feature extraction of image for Recognition[J].Pattern Recognition,1991,24(3):211~219.
  • 3Pan Quan,Zhang Min-gui,Zhou De-long,et al.Face Recognition Based on Singular Value Feature Vectors[J].Optical Engineering,2003,42(8):2368~2374.
  • 4Cheng Yong-qing,Liu Ke,Yang Jin-yu.A robust algebraic method for human face recognition[A].In:International Conference on Pattern Recognition[C].Hague,Netherlands,1992:221~224.
  • 5Tian Yuan,Tan Tie-niu,Wang Yun-hong.Do singular values contain adequate information for face recognition?[J].Pattern Recognition,2003,36(6):649~655.
  • 6Cheng Yong-qing.Human face recognition method based on the statistical models of small samples size[A].In:SPIE Proceedings on Intelligent Robots and Computer Vision[C],Boston,Massachusetts,USA,1991:85~95.
  • 7Swiniaraki R.Data mining methods in face recognition[A].In:SPIE Proceedings of Applications of Artificial Neural Networks in Image Processing[C].Cambridge UK,2000,3962:52~59.
  • 8周德龙.人脸识别技术研究[D].西安:西北工业大学,2001.
  • 9程运鹏著.矩阵论[M].西安:西北工业大学出版社,2000.
  • 10王蕴红,谭铁牛,朱勇.基于奇异值分解和数据融合的脸像鉴别[J].计算机学报,2000,23(6):649-653. 被引量:58

共引文献26

同被引文献150

引证文献16

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部