期刊文献+

Parameter effects on the dynamic characteristics of a super-long-span triple-tower suspension bridge 被引量:14

Parameter effects on the dynamic characteristics of a super-long-span triple-tower suspension bridge
原文传递
导出
摘要 A 3D finite element model for the Taizhou Yangtze River Bridge,the first triple-tower long-span suspension bridge in China,is established based on the nonlinear finite element software ABAQUS,and the dynamic characteristics of the bridge are analyzed using the LANCZOS eigenvalue solution method. The study focuses on the effects of the vertical,lateral and torsional stiffness of the steel box girder,the rigid central buckle and the elastic restraints connecting the towers and the steel box girder on the dynamic characteristics of the triple-tower suspension bridge. Our results show that,in general,the dynamic characteristics of the triple-tower suspension bridge are similar to those of two-tower suspension bridges. The vertical,lateral and torsional stiffness of the steel box girder have different effects on the dynamic characteristics of triple-tower suspension bridges. The elastic re-straints have a more significant effect on the dynamic characteristics than the central buckle,and decreasing the stiffness of the elastic restraints results in the appearance of a longitudinal floating vibration mode of the bridge. Also,rigid central buckles have a greater influence on the dynamic characteristics of triple-tower suspension bridges than on those of two-tower suspension bridges. The results obtained could serve as a valuable numerical reference for analyzing and designing super-long-span triple-tower suspension bridges. A 3D finite element model for the Taizhou Yangtze River Bridge, the first triple-tower long-span suspension bridge in China, is established based on the nonlinear finite element software ABAQUS, and the dynamic characteristics of the bridge are analyzed using the LANCZOS eigenvalue solution method. The study focuses on the effects of the vertical, lateral and torsional stiffness of the steel box girder, the rigid central buckle and the elastic restraints connecting the towers and the steel box girder on the dynamic characteristics of the triple-tower suspension bridge. Our results show that, in general, the dynamic characteristics of the triple-tower suspension bridge are similar to those of two-tower suspension bridges. The vertical, lateral and torsional stiffness of the steel box girder have different effects on the dynamic characteristics of triple-tower suspension bridges. The elastic restraints have a more significant effect on the dynamic characteristics than the central buckle, and decreasing the stiffness of the elastic restraints results in the appearance of a longitudinal floating vibration mode of the bridge. Also, rigid central buckles have a greater influence on the dynamic characteristics of triple-tower suspension bridges than on those of two-tower suspension bridges. The results obtained could serve as a valuable numerical reference for analyzing and designing super-long-span triple- tower suspension bridges.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第5期305-316,共12页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project supported by the National Natural Science Foundation of China (NSFC) (No. 50978056) the NSFC for Young Scholars (No. 50908046) the PhD Programs Foundation of MOE of China (No. 200802861012)
关键词 Suspension bridge Taizhou Bridge Triple-tower Dynamic characteristics Super-long-span Suspension bridge, Taizhou Bridge, Triple-tower, Dynamic characteristics, Super-long-span
  • 相关文献

参考文献5

二级参考文献28

共引文献108

同被引文献70

引证文献14

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部