期刊文献+

R上自相似集的自相似测度的局部维数探讨

Research of the Local Dimension of Self-similar Measure on the Self-similar Set in R
下载PDF
导出
摘要 研究了R上满足开集条件的一族压缩映射所生成的自相似集,讨论了其上给定的自相似测度μ的局部维数,在R中解决了Cawley和Mouldin问题。证明了在R中若{Ti(x)}in=1满足开集条件,x∈G∩K,Cawley和Mouldin猜想成立,并且举出反例子验证当存在x∈G/K时,Cawley和Mouldin猜想不成立。 The self-similar set generated by a family of contracting maps satisfying the open set conditions was studied,on this self-similar set,the local dimension of the self-similarity measure μ was discussed for solving the problem of Cawley and Mouldin in R.It proves that if {Ti(x)}ni=1 satisfy the open set conditions in R,x∈G∩K,the guess of Cawley and Mouldin is right,it gives an example to show existing x∈G∩K such that the guess is not right.
出处 《长江大学学报(自科版)(上旬)》 CAS 2010年第1期17-20,共4页 JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
基金 上海市科委启明星计划(03QA14036)
关键词 自相似集 自相似测度 局部维数 开集 压缩映射 Cawley和Mouldin猜想 self-similar set self-similar measure local dimension open set contracting maps guess of Cawley and Mouldin
  • 相关文献

参考文献7

  • 1Falconer K. Fractal Geometry-Mathematical Foundations and Applications [M] . New York, John Wiley and Sons, 1990.
  • 2Moran P A R. Additive Functions of Intervals and Hausdorff Measure [J] . Proc Camb Phil Soe, 1946, (42): 15-23.
  • 3Hutchinson J E. Fractals and Self-similarity [J] . Indiana University Mathematics, 1981, (30) : 714-747.
  • 4肯尼思法尔科内著.分形几何中的技巧[M].曾文曲,王向阳,陆夷译.沈阳:东北大学出版社,1996.
  • 5Falconer K J. Wavelet Transforms and Order-two Densities of Fractals [J] . J Statistical Physics, 1992, 67: 781-793.
  • 6Robert Cawley and R. Daniel Mouldin, Multifractal Decomposition of Moran Fractals [J].Advances in Mathematics, 1992, 92:196 -236.
  • 7陈二才,熊金城.关于自相似测度的点态维数[J].科学通报,1998,43(20):2162-2167. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部