摘要
利用辅助系统方法,基于稳定性理论和响应系统的有界性,得到了单向耦合下两个不同Chen系统达到广义同步时的充分条件;并根据响应系统的修正系统具有零渐近稳定平衡点、非零渐近稳定平衡点和轨道渐近稳定周期解的情况,将广义同步分为第1类、第2类和第3类;利用Routh-Hurwitz定理,对修正系统平衡点的稳定性进行分析,给出了单向耦合下两个不同Chen系统具有第1类、第2类广义同步的充分条件。数值仿真表明了该方法的有效性与可行性。
The paper investigates the three kinds of generalized synchronization of two different unidirectionally coupled chaotic Chen systems.According to the method of auxiliary-system,the theories of stability and the boundary of the responsed system,auxiliary-system,a sufficient criterion is rigorously proven.Furthermore,based on the modified system approach,GS is classified into three types: the first type、the second type and the third type of GS,when the modified system has an asymptotically stable equilibrium of zero solution,asymptotically stable equilibrium of non-zero solution,asymptotically stable limit cycles,respectively.Moreover,using the Routh-Hurwitz theorem,and analyzing the stability of equilibrium of the modified system,the existence of the first type、the second type of GS are strictly theoretically proved.The numerical simulations prove the effectiveness of the theories.
出处
《江南大学学报(自然科学版)》
CAS
2010年第2期143-150,共8页
Joural of Jiangnan University (Natural Science Edition)
基金
国家自然科学基金项目(10372054)
关键词
广义同步
CHEN系统
辅助系统
generalized synchronization
Chen system
auxiliary-system