期刊文献+

马氏过程影响的Le′vy模型下的期权定价

Option Pricing under Le′vy Model with Markov Regime Switching
下载PDF
导出
摘要 基于受马氏过程影响的Le′vy模型,通过Esscher测度变换得到一个等价鞅测度,该测度可以使定义的相关熵达到最小,在该测度下给出了欧式期权定价的一般方法;推广了E lliott等人得出的结论。 Based on the Le′vy model with markov regime switching,an equivalent martingal measure is presented by using Esscher transform.This measure is proved to minimize the relative entropy.The common method of European option pricing is obtained under the measure.Some known results are extended.
出处 《江南大学学报(自然科学版)》 CAS 2010年第2期239-243,共5页 Joural of Jiangnan University (Natural Science Edition) 
基金 江苏省高校自然科学基金项目(07KJD110093)
关键词 Le′vy模型 ESSCHER变换 最小熵鞅测度 期权定价 Le′vy model Esscher transform the minimum entropy measure option pricing
  • 相关文献

参考文献13

  • 1Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(3):637.
  • 2Press S J.A compound events model for security[J].Journal of Business,1967,1(1):25.
  • 3Hull J,White A.The pricing of options with stochastic volatities[J].Journal of Finance,1987,7(42):281.
  • 4Bates D.Jumps and stochastic volatility:exchange rate processes implicit in Deutche Mark options[J].Review of Financial Studies,1996,1(9):69.
  • 5Bakshi G,CAO C,CHEN Z.Empirical performance of alternatice option pricing models[J].Journal of Finance,1997,1(52):2003.
  • 6Elliott R J,Chain L,Sin T K.Option pricing and Esscher transform under regime switching[J].Annals of Finance,2005,1(4):423.
  • 7Elliott R J,Carlton-James U Osakwe.Option pricing for pure jump processes with Markovswitching compenstors[J].Finace and Stochastics,2006,10(2):250.
  • 8Di Masi G B,Kabanov Y M,Runggaldier W J.Mean variance hedging of options on stocks with Markov volatility[J].Theory of Probability and Applications,1994,39(1):173.
  • 9Schweizer M.Approximation pricing and the variance-optional martingale measure[J].The Annals of Probability,1996,24(1):206.
  • 10Goll T,Ruchendor L.Minimax and minimal distance martingale measure and their relationship to portfolior optimization[J].Finance and Stochastic,2001,5(4):557.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部