期刊文献+

基于Tsallis广义散度的图像阈值分割 被引量:1

Image Threshold Segmentation Based on Tsallis Generalized Divergence
下载PDF
导出
摘要 为了有效获取图像自动分割的最佳阈值,基于Tsallis广义散度概念,提出了一种新的图像阈值化方法。首先,对Tsallis广义散度公式进行化简,进而建立该简化公式的对称形式。接着,在简化公式的对称形式上构造阈值化前后图像前景与背景的散度和,然后对该和式求取极小值获取图像分割的最佳阈值。实验结果表明,新方法是可行的且能更好的适应复杂多样的图像,是一个有效的阈值分割方法。 In order to obtain the optimal threshold for automatic image segmentation efficiently, a novel image thresholding method is proposed based on the conception of Tsallis generalized divergence. First, the original formula of Tsallis generalized divergence was simplified, and then the symmetrical version was constructed. Subsequently, the divergence sum of the foreground and background between original and thresholded image was set up based on the symmetric equation. Finally, the sum formula was minimized to obtain the optimal threshold. The experimental results show that the proposed method is feasible and has better adaptability on complicated images. So, it is an available threshold selection method.
出处 《光电工程》 CAS CSCD 北大核心 2010年第5期110-115,共6页 Opto-Electronic Engineering
基金 教育部科学技术研究重点项目(108174) 重庆市自然科学基金项目(CSTC 2008BB3169)
关键词 图像分割 阈值化 Tsallis广义散度 image segmentation thresholding Tsallis generalized divergence
  • 相关文献

参考文献13

二级参考文献52

  • 1安宁,林树忠,刘海华,崔慧.图像处理方法研究及其应用[J].仪器仪表学报,2006,27(z1):792-793. 被引量:34
  • 2王兆虎,刘芳,焦李成.一种基于视觉特性的遥感图像分割[J].计算机学报,2005,28(10):1686-1691. 被引量:10
  • 3杜晓晨,刘建平.改进的模糊阈值图像分割方法[J].光电工程,2005,32(10):51-53. 被引量:13
  • 4章毓晋.图像工程(上)--图像处理和分析[M].北京:清华大学出版社,2000.1-46,81-106.
  • 5Fukunaga K, Hostetler L D. The estimation of the gradient of a density function with applications in pattem recognition [J]. IEEE Trans. on Information Theory(S0018-9448), 1975, 21(1): 32-40.
  • 6Cheng Y Z. Mean shift, mode seeking, and clustering [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence (S0162-8828), 1995, 17(8): 790-799.
  • 7Comaniciu D, Meer P. Mean shift: A Robust Approach toward Feature Analysis [J]. IEEE Trans on Pattern Analysis and Machine Intelligence(S0162-8828), 2002, 24(5): 603-619.
  • 8Comaniciu D, Ramesh V, Meer E The Variable Bandwidth Mean Shift and Data-Driven Scale Selection [C]// Proceedings of Eighth IEEE International Conference on Computer, Vision Vancouver, BC, Canada, July 7-14, 2001, 1: 438-445.
  • 9Comaniciu D. An algorithm for data-driven bandwith selection [J]. IEEE Trans on Pattern Analysis and Machine Intelligence(S0162-8828), 2003, 25(2): 281-288.
  • 10Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, SC, USA, June 13-15, 2000, 2:142-149.

共引文献63

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部