期刊文献+

一种高效的图像去噪算法 被引量:1

An Efficient Image Denoising Algorithm
下载PDF
导出
摘要 针对图像去噪的速度以及可能出现的阶梯效应等问题进行了研究,提出了一种高效的图像去噪算法。该算法在贝叶斯框架下,首先引入调和模型作为原始图像的先验模型,并用伽马分布作为未知参数的先验分布模型;然后,用变分近似的方法推导最大后验概率;基于此推导过程,同步地估计原始图像和未知参数的最优值,实现图像去噪。实验结果证明了该算法的高效性,通过与其它算法的比较,该算法体现了速度快、效果好的优点,且去噪后的图像不会出现阶梯效应等问题。 An efficient algorithm was presented to solve the problems of the speed and the staircase effect in the image denoising. In the Bayesian framework, firstly, the harmonic model was introduced as the prior model of the original image, and the Gamma distribution was supposed to be the prior distribution model of the unknown parameters. Secondly, the maximum posteriori probability was deduced using the variational method, based on which the original image and the unknown parameters were estimated simultaneously to remove the noise in the observed image. The experimental results show the efficiency of the proposed algorithm. Furthermore, compared with other similar algorithms, the proposed algorithm shows the competitive performance on the speed without bringing the staircase effect to the denoised images.
出处 《光电工程》 CAS CSCD 北大核心 2010年第5期116-122,共7页 Opto-Electronic Engineering
基金 国家自然科学基金(60573019) 广东省科技计划项目(2008B080701052 2009B030803004) 广东省自然科学基金博士科研启动基金资助项目(7300561)
关键词 图像去噪 贝叶斯框架 先验模型 调和模型 参数估计 image denoising Bayesian framework prior model harmonic model parameter estimation
  • 相关文献

参考文献17

  • 1ZHANG Ming,Gunturk B K.Multiresolution bilateral filtering for image denoising[J].IEEE Transactions on Image Processing(S1057-7149),2008,17(12):2324-2333.
  • 2Portilla J,Strela V,Wainwright M J,et al.Image denoising using scale mixtures of Gaussians in the wavelet domain[J]IEEE Transactions on Image Processing(S1057-7149),2003,12(11):1338-1351.
  • 3ZHANG Bo,Fadili J M,Starck J.Wavelets,ridgelets,and eurvelets for Poisson noise removal[J].IEEE Transactions on Image Processing(S1057-7149),2008,17(7):1093-1108.
  • 4Malfait M,Roose D.Wavelet-based image denoising using a Markov random field a priori model[J].IEEE Transactions on Image Processing(S1057-7149),1997,6(4):549-565.
  • 5Goossens B,Pizurica A,Philips W.Image denoising using mixtures of projected Gaussian scale mixtures[J].IEEE Transacfions on Image Processing(S1057-7149),2009,18(8):1689-1702.
  • 6Chan T,Marquina A,Mulet P.High-order total variation-based image restoration[J].SIAM Journal on Scientific Computing (S1064-8275),2000,22(2):503-516.
  • 7Bioucas-Dias J M,Figueimdo M A T.A new TWIST:two-step iterative shrinkage/thresholding algorithms for image restoration[J].IEEE Transactions on Image Processing(S1057-7149),2007,16(12):2992-3004.
  • 8吴斌,吴亚东,张红英.基于变分偏微分方程的图像复原技术[M].北京:北京大学出版社,2008.
  • 9Babacan S D,Molina R,Katsaggelos A K.Bayesian compressive sensing using Laplace priors[J].IEEE Transactions on Image Processing(S1057-7149),2010,19(1):53-63.
  • 10Berger J O.Staistical Decision Theory and Bayesian Analysis[M].New York:Springer-Verlag,1985.

共引文献21

同被引文献11

  • 1黄飞,金伟其,曹峰梅,刘伯丰.相向运动条件下图像的辐射状退化及其复原研究[J].电子学报,2005,33(9):1710-1713. 被引量:7
  • 2于勇,付忠良.相向运动径向模糊图像的复原算法研究[J].计算机应用,2007,27(1):174-176. 被引量:5
  • 3Webster C B, Reeves S J. Radial Deblurring with FFTs[C]//Proceedings of IEEE Conference on Image Processing. San Antonio: 1EEE Computer Society,2007 : 101-104.
  • 4Boracchi G, Foi A, Katkovanik V, et al. Deblurring Noisy Radial blurred Images: Spatially Adaptive Filtering Approach [C] //Proceedings of SPIE Electronic Imaging. San Joes.. SPIE, 2008 : 1-12.
  • 5Katkovnik V, Foi A, Egiazarian K, et al. From Local Kernel to Nonlocal Multiple-model Image Denoising[J]. Int J Comput Vision, 2010, 86(1): 1-32.
  • 6Lucy I. B. An Iterative Technique for the Rectification of Observed Distribution[J]. Astron J, 1974, 79(6): 745-754.
  • 7Tai Y W, "Fan P, Brown M S. Richardson-Lucy Deblurring for Scenes Under a Proiective Motion Path[EB/OL]. http ://yuwing. kaist, ac. kr/projects/projectivedeblur/index, htm, 2010-11-20/2010 12 10.
  • 8I.ou Y F, Zhang X Q, Osher S. Image Recovery via Nonlocal Operators[J]. J Sci Comput, 2010, 42(2): 185-197.
  • 9Zhou W, Alna C B, Hamid R S, et al. Image Quality Assessment: From Error Visibility to Structural Similarity[J]. IEEE Tran on lmage Process, 2004, 13(4): 1-14.
  • 10Vogel C, Oman M. herative Methods for Total Variation Denoising[J]. SIAM J SciComput, 1996, 17(1): 227-238.

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部