摘要
本文研究了概率度量空间的拓扑结构和度量化的问題,得到了一种充分条件,给出其具体度量函数的形式,并由此得到了概率度量空间中的Ekeland变分原理和Caristi定理,以及概率度量空间和非阿基米德概率度量空间中映象的不动点定理。
In this paper, we study topological structure and metrization problem of probabilistic metric spaces, obtain a kind of sufficient conditions and give the form of concretely metric function. And then we obtain Ekeland varia tional pr-inciple and Caristi theorem on probabilistic metric spaces,and the fixed points theorem of mapping on probabilistic metric spaces andnon-Archimedean probabilistic spaces.
出处
《曲阜师范大学学报(自然科学版)》
CAS
1990年第3期1-9,共9页
Journal of Qufu Normal University(Natural Science)
基金
国家自然科学基金
关键词
概率度量空间
拓扑
度量化
Probabilistic metric spaces, Topological structure, Metrization Ekeland variational principle, Caristi theorem, fixed points theorem